Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • membrane potential  (2)
  • Chloride conductance  (1)
  • Human neutrophil  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 945 (1988), S. 113-120 
    ISSN: 0005-2736
    Keywords: (Human placenta) ; Chloride conductance ; Cystic fibrosis ; Fluorescence ; Membrane transport
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0014-5793
    Keywords: Ca^2^+ chang ; Human neutrophil ; Phosphatidate ; Phosphatidylinositide ; Respiratory burst
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 90 (1986), S. 163-175 
    ISSN: 1432-1424
    Keywords: cyanine dye ; membrane potential ; stopped-flow ; brush-border membrane ; fluorescence lifetimes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The equilibrium binding mechanism and kinetics of binding of diS−C3-(5) (3,3′-dipropylthiodicarbocyanine iodide) to rabbit renal brush-border membrane vesicles (BBMV) were examined using steady-state and time-resolved fluorescence, and fluorescence stopped-flow methods. In aqueous solution, diS−C3-(5) exists as a monomer at concentrations 〈5 μm with fluorescence emission peak at 670 nm (excitation 622 nm), anisotropyr=0.102, and lifetime τ=1.2 nsec (23°C). Upon addition of increasing BBMV (voltage clamped to 0 mV using K+/valinomycin), the 670 nm emission peak decreases, corresponding to formation of a nonfluorescent membrane dimer, and subsequently a new emission peak at 695 nm increases, corresponding to membrane monomer. Dynamic depolarization studies show that aqueous diS−C3-(5) rotation is unhindered with a rotational rateR=0.57 nsec−1 while membrane monomer is hindered with steady-state anisotropyr=0.190, lifetime τ=2.1 nsec,R=0.58 nsec−1 and limiting anisotropyr ∝=0.11. Based on equilibrium fluorescence titrations, the membrane monomer-dimer (M-D) dissociation constant,K d=[M]2/[D][BBMV], is 0.0013, where BBMV is expressed as membrane phospholipid concentration. Three distinct kinetic processes are identified by stopped-flow experiments in which BBMV are mixed with diS−C3-(5). There is rapid binding of diS−C3-(5) to the membrane to form bound monomer with a 6-msec exponential time constant. The membrane monomer at the membrane outer surface then aggregates to form bound dimer at the outer surface with a concentration independent time constant of 30 msec. The overall dimerization reaction probably consists of a rate-limiting reorientation process (30 msec) followed by a rapid dimerization which occurs on a nanosecond time scale. Finally, there is a 0.8 to 1 sec translocation of membrane dimer between symmetric sites at the inner and outer membrane surfaces. The translocation reaction is the step which is probably sensitive to changes in transmembrane electrical potential.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 92 (1986), S. 171-182 
    ISSN: 1432-1424
    Keywords: cyanines ; membrane potential ; fluorescence life-time ; brush border membrane ; phosphatidylcholine vesicle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The potential-sensitive response mechanism of 3,3′-dipropylthiodicarbocyanine iodide (diS-C3-(5)) was examined based on our previous model of diS-C3-(5) interaction with brush border membrane vesicles (BBMV) in the absence of a membrane potential. The model contained binding (6 msec), reorientation (30 msec), dimerization (〈10 nsec), and translocation (1 sec) reaction steps (Cabrini & Verkman, 1986.J. Membrane Biol. 90:163–175). Transmembrane potentials (ψ) were induced in BBMV by K+ gradients and valinomycin. Steady-state diS-C3-(5) fluorescence (excitation 622 nm, emission 670 nm) increased linearly with ψ. The reorientation and translocation reaction steps were resolved by the stopped-flow technique as a biexponential decrease in fluorescence following mixture of diS-C3-(5) with BBMV at varying ψ. The fractional amplitude of the faster exponential increased from 0.36 to 0.73 with increasing ψ (−17 to 87 mV); the time constant for the faster exponential (30–35 msec) was independent of ψ. There were single exponential kinetics (0.5–1.5 sec) for diS-C3-(5) fluorescence response to a rapid (〈2 msec) change in ψ in the absence of a diS-C3-(5) concentration gradient. These results, and similar findings in placental brush border vesicles, red cell vesicles, and phosphatidylcholine vesicles, support a translocation mechanism for diS-C3-(5) response, where induced membrane potentials drive diS-C3-(5) redistribution between sites at the inner and outer membrane leaflets, with secondary effects on diS-C3-(5) dimerization and solution/membrane partitioning. Fluorescence lifetime and dynamic depolarization measurements showed no significant change in diS-C3-(5) rotational characteristics or in the polarity of the diS-C3-(5) environment with changes in ψ. Based on the experimental results, a mathematical model is developed to explain the quantitative changes in diS-C3-(5) fluorescence which accompany changes in ψ at arbitrary dye/lipid ratios.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...