Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Brassica species ; Allodiploids ; Three-genome hybrids ; Homoeologous pairing ; Alien gene introgression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words  Brassica species ; Allodiploids ; Three-genome hybrids ; Homoeologous pairing ; Alien gene introgression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BB) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor backcrossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Brassica coenospecies ; Subtribe Brassicinae ; Chloroplast DNA ; Mitochondrial DNA ; Phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Chloroplast DNA (cpDNA) variability of 60 taxa of the genus Brassica and allied genera comprising 50 species was studied. RFLPs for seven enzymes were generated and F values were estimated from five frequently cutting enzymes. Phenetic clusterings indicated a clear division of Brassica coenospecies into two distinct lineages referred to as the Brassica and Sinapis lineages. Two unexplored genera, Diplotaxis and Erucastrum, also exhibited two lineages in addition to the genera Brassica and Sinapis. This finding is inconsistent with the existing taxonomic classification based on morphology. Mitochondrial DNA (mtDNA) variability studied from EcoRI RFLP patterns, by hybridizing total DNA with four cosmid clones containing non-overlapping mtDNA fragments, did not show any congruence with cpDNA variation patterns. However, at the cytodeme level, the patterns of genetic divergence suggested by the cpDNA data could be correlated with mtDNA variation. In the Brassica lineage, Diplotaxis viminea was identified as the female parent of the allotetraploid D. muralis. The chloroplast DNAs of Erucastrum strigosum and Er. abyssinicum were found to be very closely related. In the Sinapis lineage, Brassica maurorum was found to be the diploid progenitor of autotetraploid B. cossoneana. B. amplexicaulis showed a very different cpDNA pattern from other members of the subtribe. Brassica adpressa was closest to Erucastrum laevigatum and could be the diploid progenitor of autotetraploid Er. laevigatum. Based on the close similarity of the cpDNA pattern of Diplotaxis siifolia with that of D. assurgens, we have proposed the retention of this species in the genus Diplotaxis. The taxonomic positions of some other species have also been discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...