Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chloroplasts and CO2 fixation  (1)
  • Photosystem II  (1)
  • Photosystem II core complex  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 145 (1979), S. 393-394 
    ISSN: 1432-2048
    Keywords: Chloroplasts and CO2 fixation ; glycinebetaine ; Proline ; Spinacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spinach chloroplasts capable of high rates of CO2 fixation have been isolated in glycinebetaine as an alternative osmoticum to sorbitol and found to be very stable. Proline was a less satisfactory alternatine. The possible significance of the use of glycinebetaine is discussed as this solute may be the physiological cytoplasmic osmoticum in members of the Chenopodiaceae.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: Photosystem II core complex ; P680+ reduction kinetics ; S-state ; ultraviolet radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Flash-induced absorbance measurements at 830 nm on both nanosecond and microsecond timescales have been used to characterise the effect of ultraviolet light on Photosystem II core particles. A combination of UV-A and UV-B, closely simulating the spectrum of sunlight below 350 nm, was found to have a primary effect on the donor side of P680. Repetitive measurements indicated reductions in the nanosecond components of the absorbance decay with a concomitant appearance and increase in the amplitude of a component with a 10 μs time constant attributed to slow reduction of P680+ by Tyrz when the function of the oxygen evolving complex is inhibited. Single-flash measurements show that the nanosecond components have amplitudes which vary with S-state. Increasing UV irradiation inhibited the amplitude of these components without changing their S-state dependence. In addition, UV irradiation resulted in a reduction in the total amplitude, with no change in the proportion of the 10 μs contribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 49 (1996), S. 209-221 
    ISSN: 1573-5079
    Keywords: Photosystem II ; core particle ; P680 ; 830 nm transient absorption ; S-states ; oxygen-evolving complex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The kinetics of P680+ reduction in oxygen-evolving spinach Photosystem II (PS II) core particles were studied using both repetitive and single-flash 830 nm transient absorption. From measurements on samples in which PS II turnover is blocked, we estimate radical-pair lifetimes of 2 ns and 19 ns. Nanosecond single-flash measurements indicate decay times of 7 ns, 40 ns and 95 ns. Both the longer 40 ns and 95 ns components relate to the normal S-state controlled Yz → P680+ electron transfer dynamics. Our analysis indicates the existence of a 7 ns component which provides evidence for an additional process associated with modified interactions involving the water-splitting catalytic site. Corresponding microsecond measurements show decay times of 4 μs and 90 μs with the possibility of a small component with a decay time of 20–40 μs. The precise origin of the 4 μs component remains uncertain but appears to be associated with the water-splitting center or its binding site while the 90 μs component is assigned to P680+-QA − recombination. An amplitude and kinetic analysis of the flash dependence data gives results that are consistent with the current model of the oxygen-evolving complex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...