Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4889
    Keywords: alloy oxidation ; Ni-Cr alloys ; diffusion ; depletion zones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Compositional changes in the alloy beneath scales have been examined for the oxidation of Ni-27.4%Cr and Ni-40.2% Cr in 1 atm oxygen in the temperature range 1073–1473°K. Calculations of the rate of approach of the interfacial alloy composition to a constant value are compared with experimental data. Theoretical chromium depletion profiles obtained using both a finite difference analysis and an analytical expression are shown to be essentially equivalent and in good agreement with experimental measurements. The consequences of alloy depletion for the scaling behavior, when the protective scale is ruptured, are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4889
    Keywords: alloy oxidation ; diffusion ; alloy depletion profiles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The assumptions involved in Wagner's original treatment of alloy depletion profiles are examined and found to be acceptable for many situations. Finite difference analyses do not result in profiles which are significantly different from those obtained by the much simpler analytical solution once steady-state parabolic growth is established. Consequently an analytical solution is preferred and its combination with the classical Wagner expression for scale growth leads to a unified description of alloy oxidation when only the least noble metal is oxidized. The description is tested for an Fe-27.4wt.% Cr alloy oxidized at 1273°K and agreement between theoretical and experimental results is satisfactory. Alternative treatments of alloy oxidation which require that there be no recession of the alloy-scale interface are discussed and it is concluded that this assumption is unnecessarily restrictive in many cases. Suggestions that the oxidation of austenitic steels is controlled by diffusion in the alloy and that an interfacial transfer step is of importance in determining the oxidation rate in some cases are shown to be based on invalid assumptions. An analytical solution to the diffusion equation is developed for the case when a phase change occurs in the alloy because of less noble metal depletion and an expression is also presented for the profile developed in the limiting case where depletion is determined by scale evaporation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 13 (1979), S. 381-401 
    ISSN: 1573-4889
    Keywords: Co-Cr-Al ; oxidation ; dispersed oxides ; oxide scale adherence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The improvement in oxidation resistance produced by small additions of active elements to Al 2O3-forming CoCrAl alloys is primarily dependent on the formation of oxide pegs which grow into the alloy around the internal oxide particles of the active element; void formation at the alloy-scale interface is also suppressed. The distribution of these pegs is critical and this paper demonstrates that an internal oxidation pretreatment can be used to convert the active element to its oxide in a controlled manner, thereby optimizing the peg distribution. Al2O3-forming CoCrAl containing 1% Hf or Ce is internally oxidized in a sealed quartz capsule containing a 50/50 powder mixture of CoAl-Al2O3; it was not possible to oxidize internally Y-containing alloys. The isothermal and cyclic oxidation resistance of these alloys is superior to that of alloys not given a prior treatment. Detailed metallographic examination indicates that the prior internal oxidation treatment produces a finer, more uniform distribution of oxide pegs penetrating into the alloy which is more efficient in combatting scale spallation. Furthermore, the lower residual hafnium content in the alloy minimizes large HfO2 precipitates and the formation of gross Al2O3 intrusions, which can initiate scale failure. Thus, by internally oxidizing the alloy first, the advantages of a high alloy Hf content (1%) in producing sufficient oxide pegs, but of the right size, coupled with minimal thickening of the surface scale, can be achieved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...