Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 33 (1991), S. 216-225 
    ISSN: 1432-1432
    Keywords: Ubiquitin gene ; Codon usage ; Molecular evolution ; Gene organization ; Sequence comparison
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 583-592 
    ISSN: 1432-1432
    Keywords: Silk fibroin gene ; Unequal crossover ; Three-tiered higher-order structure ; Codon usage ; Repetitive sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have sequenced a number of cDNAs representing the Bombyx mori silk fibroin heavy chain transcript. These reveal that the central region of the fibroin gene is composed of alternate arrays of the crystalline element a and the noncrystalline element b. The core region is partitioned by a homogeneous nonrepetitive amorphous domain of around 100 by in length. The element a is characterized by repeats of a highly conserved 18-bp sequence coding for perfect repeats of the unit peptide Gly-Ala-Gly-Ala-Gly-Ser. The element b is composed of repeats of a less-conserved 30-bp sequence which codes for a peptide similar to that in element a except in that (1) Ser is replaced by Tyr and (2) there are irregular substitutions of Ala to Val or Tyr. Therefore, the structure of the fibroin gene core consists of three-step higher-order periodicities. Heterogeneities in numbers of repeats are observed in each step of periodicity. Boundary sequence appeared in each periodicity to be quite homogeneous. Sequence analysis indicates that the unit sequences of elements a and b have homology to those of recombination hotspots reported in other genes and a recombination event may frequently occur between the misaligned sister chromatids, resulting in heterogeneities in repeat numbers and duplication or deletion of repetitive sequences. The repetitive superstructure of the fibroin gene may have been a result of continuous unequal crossovers in a primordial gene during evolution. A couple of important features of the fibroin protein were proved by the present nucleotide sequencing. The amino acid representation of the amorphous domain is vastly different from that of the repetitive regions. The carboxy-terminal nonrepetitive region has three Cys and nine (Arg + Lys) residues that may be responsible for complex formation with the fibroin light-chain molecule. The present DNA analysis also clearly demonstrates that the tRNA population in the posterior silk gland strictly complements the frequency of codons in the fibroin mRNA, which may help to achieve a highly efficient translation of fibroin mRNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...