Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 85 (1991), S. 364-372 
    ISSN: 1432-1106
    Keywords: Posture ; Stance ; Balance ; Vestibular system ; Labyrinthectomy ; Ground reaction forces ; EMG ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of this study was to examine the effect of bilateral labyrinthectomy on quiet stance in the freely-standing cat. Since loss of the vestibular end organs produces marked deficits in motor behaviour, including ataxia and problems with balance, we hypothesized that labyrinthectomized animals would show impairment in quantitative measures of stance. Stance was quantified in terms of the ground reaction forces under each limb and the tonic electromyographic (EMG) activity of selected muscles. Animals were labyrinthectomized by drilling into the vestibule and removing the vestibular epithelium. Following lesion, animals were able to stand unsupported on the force platform within 2 days. To our surprise, the lesioned animals showed little change in stance parameters from the control, pre-lesion state. Thus, our hypothesis of changes in stance parameters was not supported. There was no change in the distribution of vertical forces under the limbs and no increase in sway, as measured by the area of excursion of the centre of pressure over time. The horizontal plane forces, which were diagonally directed prior to lesion, became more laterally directed and larger in amplitude. The change in direction persisted even after the animals had fully compensated for the lesion, but the force amplitudes returned to control values within 10–12 days. The change in horizontal force direction was similar to that observed in normal animals that were required to stand with their paws closer than preferred in the sagittal plane (unpublished observations). EMG activity changed in some muscles but not others, and usually transiently. One limb extensor showed decreases in tonic activity (gluteus medius), but other extensors showed increases (vastus medialis, soleus). It is likely that the changes in EMG levels were due to the biomechanics of the stance configuration related to the changes in direction of the horizontal plane forces. Kinematic recordings are needed to address this issue further.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 124 (1999), S. 273-280 
    ISSN: 1432-1106
    Keywords: Key words Vestibular system ; Posture control ; Balance ; Cross-spectral analysis ; Coherency ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Galvanic vestibular stimulation serves to modulate the continuous firing level of the peripheral vestibular afferents. It has been shown that the application of sinusoidally varying, bipolar galvanic currents to the vestibular system can lead to sinusoidally varying postural sway. Our objective was to test the hypothesis that stochastic galvanic vestibular stimulation can lead to coherent stochastic postural sway. Bipolar binaural stochastic galvanic vestibular stimulation was applied to nine healthy young subjects. Three different stochastic vestibular stimulation signals, each with a different frequency content (0–1 Hz, 1–2 Hz, and 0–2 Hz), were used. The stimulation level (range 0.4–1.5 mA, peak to peak) was determined on an individual basis. Twenty 60-s trials were conducted on each subject – 15 stimulation trials (5 trials with each stimulation signal) and 5 control (no stimulation) trials. During the trials, subjects stood in a relaxed, upright position with their head facing forward. Postural sway was evaluated by using a force platform to measure the displacements of the center of pressure (COP) under each subject’s feet. Cross-spectral measures were used to quantify the relationship between the applied stimulus and the resulting COP time series. We found significant coherency between the stochastic vestibular stimulation signal and the resulting mediolateral COP time series in the majority of trials in 8 of the 9 subjects tested. The coherency results for each stimulation signal were reproducible from trial to trial, and the highest degree of coherency was found for the 1- to 2-Hz stochastic vestibular stimulation signal. In general, for the nine subjects tested, we did not find consistent significant coherency between the stochastic vestibular stimulation signals and the anteroposterior COP time series. This work demonstrates that, in subjects who are facing forward, bipolar binaural stochastic galvanic stimulation of the vestibular system leads to coherent stochastic mediolateral postural sway, but it does not lead to coherent stochastic anteroposterior postural sway. Our finding that the coherency was highest for the 1- to 2-Hz stochastic vestibular stimulation signal may be due to the intrinsic dynamics of the quasi-static postural control system. In particular, it may result from the effects of the vestibular stimulus simply being superimposed upon the quiet-standing COP displacements. By utilizing stochastic stimulation signals, we ensured that the subjects could not predict a change in the vestibular stimulus. Thus, our findings indicate that subjects can act as ”responders” to galvanic vestibular stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...