Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 60 (1996), S. 297-306 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The formulation of the time-dependent Frenkel variational principle for Hamiltonians containing a term depending on the wave function is here considered. Starting from the basic principles, it is shown that it requires the introduction of a related functional, G, which, for the systems we are considering, has the status of a free energy. An explicit use of functional G as starting point to obtain variational wave functions makes it easier to implement computational methods for a variety of physical and chemical problems in solution, the first one among them being the calculation of frequency-dependent nonlinear optical properties of components of the liquid phase. A concise overview of applications of this approach which are presently being worked out in our laboratory is also given. © 1996 John Wiley & Sons, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 5 (1984), S. 263-271 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The effect of correlation energy on the relative stability of different structures and dissociation products of complex lithium beryllohydrides has been investigated. The adequacy of the method employed (third-order Möller-Plesset perturbation theory) and the basis set dependence have been assessed. Trends of the correlation energy according to the molecular structure have been discussed, and the validity of an additive scheme based on electron pair contributions has been tested.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 784-791 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A computational method for the evaluation of dispersion and repulsion contributions to the solvation energy is here presented in a formulation which makes use of a continuous distribution of the solvent, without introducing additional assumptions (e.g., local isotropy in the solvent distribution). The analysis is addressed to compare the relative importance of the various components of the dispersion energy (n = 6, 8, 10) and of the repulsion term, to compare several molecular indicators (molecular surface and volume, number of electrons) which may be put in relation to the dispersion-repulsion energy, and to define simplified computational strategies. The numerical examples refer to saturated hydrocarbons in water, treated with the homogeneous approximation of the distribution function which for this type of solution appears to be acceptable.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...