Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 14 (1993), S. 1184-1193 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We describe a new method for de novo design of molecules that bind to protein active sites. The method, CONCEPTS (Creation of Novel Compounds by Evaluation of Particles at Target Sites), places a group of atom-like particles in the site. The particles are free to move within the site to improve binding to the protein. A key innovation of this technique is that covalent connections are made among the particles in a stochastic and dynamically reversible manner. These changes in the topology are either accepted or rejected depending on their ability to improve the total energy of the enzyme-inhibitor complex. The method is applied to two test systems: The FK506 binding protein (FKBP-12) and HIV-1 aspartyl protease. In both cases, we are able to predict, de novo, drugs that have striking similarities to known potent inhibitors and that can successfully be used to generate “hits” of the known inhibitors from a data base. © John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 351-373 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A coarse-grain parallel implementation of the free energy perturbation (FEP) module of the AMBER molecular dynamics program is described and then demonstrated using five different molecular systems. The difference in the free energy of (aqueous) solvation is calculated for two monovalent cations ΔΔGaq(Li+ Δ Cs+), and for the zero-sum ethane-to-ethane′ perturbation ΔΔGaq(CH3—methyl—X → X—methyl—CH3), where X is a ghost methyl. The difference in binding free energy for a docked HIV-1 protease inhibitor into its ethylene mimetic is examined by mutating its fifth peptide bond, ΔG(CO—NH → CH=CH). A potassium ion (K+) is driven outward from the center of mass of ionophore salinomycin (SAL-) in a potential of mean force calculation ΔGMeOH(SAL- · K+) carried out in methanol solvent. Parallel speedup obtained is linearly proportional to the number of parallel processors applied. Finally, the difference in free energy of solvation of phenol versus benzene, ΔΔGoct(phenol → benzene), is determined in water-saturated octanol and then expressed in terms of relative partition coefficients, Δ log(Po/w). Because no interprocessor communication is required, this approach is scalable and applicable in general for any parallel architecture or network of machines. FEP calculations run on the nCUBE/2 using 50 or 100 parallel processors were completed in clock times equivalent to or twice as fast as a Cray Y-MP. The difficulty of ensuring adequate system equilibrium when agradual configurational reorientation follows the mutation of the Hamiltonian is discussed and analyzed. The results of a successful protocol for overcoming this equilibration problem are presented. The types of molecular perturbations for which this method is expected to perform most efficiently are described. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 362-370 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The solvation free energies of thymine and adenine were calculated using free energy methods to examine the effect of applying Lennard-Jones 6-12 and 10-12 perturbations to the hydrogen-bonding groups. The calculations were performed using a new free energy algorithm developed for the AMBER 4.0 program package that allows an interaction described by a Lennard-Jones 6-12 potential to be changed into one described by a hydrogen bond 10-12 potential. The algorithm applied allows this change to occur smoothly without the generation of more extrema on the potential surface. Results using this algorithm have been compared with those determined using the standard AMBER 3.0 Revision A program package, which provides for 6-12 to 6-12 parameter perturbations only. We have also developed a procedure to perform pyrimidine to purine nucleoside mutations to calculate the relative free energies of solvation directly. The theoretical results are compared to experimental energies derived from solvation and vaporization data taken from the literature. The free energies calculated using the new algorithm show good agreement with the derived experimental values. This is also true for the calculations that employ the 6-12 function only, but with 6-12 parameters modified to reflect the correct hydrogen-bonding interactions. However, perturbation of the “standard” 6-12 parameters without changing the functional form proves to be less effective in determining solvation free energies correctly, and demonstrates the importance of accurate hydrogen bond descriptions in free energy simulations.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 105-123 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The convergence behavior of free energy calculations has been explored in more detail than in any previously reported work, using a model system of two neon atoms in a periodic box of water. We find that for thermodynamic integration-type free energy calculations as much as a nanosecond or more molecular dynamics sampling is required to obtain a fully converged value for a single λ point of the integrand. The concept of “free energy derivatives” with respect to the individual parameters of the force field is introduced. This formalism allows the total convergence of the simulation to be deconvoluted into components. A determination of the statistical “sampling ratio” from these simulations indicates that for window-type free energy calculations carried out in a periodic waterbox of typical size at least 0.6 ps of sampling should be performed at each window (0.7 ps if constraint contributions to the free energy are being determined). General methods to estimate and reduce the error in thermodynamic integration and free energy perturbation calculations are discussed. We show that the difficulty in applying such methods is determining a reliable estimate of the correlation length from a short series of data. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...