Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 27 (1999), S. 648-655 
    ISSN: 1573-9686
    Keywords: Leukocyte model ; Computational cellular dynamics ; Cell recovery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The rheological properties of a leukocyte significantly affect its biological and mechanical characteristics. To date, existing physical models of leukocyte are not capable of quantitatively explaining the wide range of deformation and recovery behaviors observed in experiment. However, a compound drop model has gained some success. In the present work, we investigate the effect of nucleus size and position, and the relative rheological properties of cytoplasm and nucleus, on cell recovery dynamics. Two nucleus sizes corresponding to that of neutrophil and lymphocyte are considered. Direct comparison between numerical simulations and experimental observation is made. Results indicate that the time scale ratio between the nucleus and cytoplasm plays an important role in cell recovery characteristics. Comparable time scales between the two cell components yield favorable agreement in recovery rates between numerical and experimental observations; disparate time scales, on the other hand, result in recovery behavior and cell shapes inconsistent with experiments. Furthermore, it is found that the nucleus eccentricity exhibits minimum influence on all major aspects of the cell recovery characteristics. The present work offers additional evidence in support of the compound cell model for predicting the rheological behavior of leukocytes. © 1999 Biomedical Engineering Society. PAC99: 8717-d, 8719Tt
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 861-882 
    ISSN: 0271-2091
    Keywords: Three Dimensional Flow ; Turbine Draft Tube ; Curvilinear Co-ordinates ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The three-dimensional turbulent flow in a curved hydraulic turbine draft tube is studied numerically. The analysis is based on the steady Reynolds-averaged Navier-Stokes equations closed with the κ-ε model. The governing equations are discretized by a conservative finite volume formulation on a non-orthogonal body-fitted co-ordinate system. Two grid systems, one with 34 × 16 × 12 nodes and another with 50 × 30 × 22 nodes, have been used and the results from them are compared. In terms of computing effort, the number of iterations needed to yield the same degree of convergence is found to be proportional to the square root of the total number of nodes employed, which is consistent with an earlier study made for two-dimensional flows using the same algorithm. Calculations have been performed over a wide range of inlet swirl, using both the hybrid and second-order upwind schemes on coarse and fine grids. The addition of inlet swirl is found to eliminate the stalling characteristics in the downstream region and modify the behaviour of the flow markedly in the elbow region, thereby affecting the overall pressure recovery noticeably. The recovery factor increases up to a swirl ratio of about 0·75, and then drops off. Although the general trends obtained with both finite difference operators are in agreement, the quantitative values as well as some of the fine flow structures can differ. Many of the detailed features observed on the fine grid system are smeared out on the coarse grid system, pointing out the necessity of both a good finite difference operator and a good grid distribution for an accurate result.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 12 (1991), S. 161-177 
    ISSN: 0271-2091
    Keywords: Convection approximation ; Total variation diminishing schemes ; Shock ; Turbulent and inviscid flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A systematic study has been conducted to assess the performance of the TVD schemes for practical flow computation. The viewpoint adopted here is to treat the TVD schemes as a combination of the standard central difference scheme with numerical dissipation terms. The controlled amount of numerical dissipation modifies the computed fluxes to ensure that the solution is oscillation-free. Four variants of TVD schemes, two with upwind dissipation terms and two with symmetric dissipation terms, have been studied and compared with the conventional Beam-Warming scheme for inviscid and turbulent axisymmetric flow computations. The results obtained show that all four variants can accurately resolve the shock and flow profiles with fewer grid points than the Beam-Warming scheme. The convergence rates of the TVD schemes are also substantially superior to that of the Beam-Warming scheme. The combination of high accuracy, good robustness and improved computational efficiency offered by the TVD schemes makes them attractive for computing high-speed flow with shocks. In terms of the relative performances it is found that the symmetric schemes converge slightly faster but that the upwind schemes are less sensitive to the number of grid points being employed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 475-489 
    ISSN: 0271-2091
    Keywords: Adaptive grid computation ; High Reynolds number flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Recently the concept of adaptive grid computation has received much attention in the computational fluid dynamics research community. This paper continues the previous efforts of multiple one-dimensional procedures in developing and asessing the ideas of adaptive grid computation. The focus points here are the issue of numerical stability induced by the grid distribution and the accuracy comparison with previously reported work. Two two-dimensional problems with complicated characteristics - namely, flow in a channel with a sudden expansion and natural convection in an enclosed square cavity - are used to demonstrate some salient features of the adaptive grid method. For the channel flow, by appropriate distribution of the grid points the numerical algorithm can more effectively dampen out the instabilities, especially those related to artificial boundary treatments, and hence can converge to a steady-state solution more rapidly. For a more accurate finite difference operator, which contains less undesirable numerical diffusion, the present adaptive grid method can yield a steady-state and convergent solution, while uniform grids produce non-convergent and numerically oscillating solutions. Furthermore, the grid distribution resulting from the adaptive procedure is very responsive to the different characteristics of laminar and turbulent flows. For the problem of natural convection, a combination of a multiple one-dimensional adaptive procedure and a variational formulation is found very useful. Comparisons of the solutions on uniform and adaptive grids with the reported benchmark calculations demonstrate the important role that the adaptive grid computation can play in resolving complicated flow characteristics.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...