Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 27 (1999), S. 648-655 
    ISSN: 1573-9686
    Keywords: Leukocyte model ; Computational cellular dynamics ; Cell recovery
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The rheological properties of a leukocyte significantly affect its biological and mechanical characteristics. To date, existing physical models of leukocyte are not capable of quantitatively explaining the wide range of deformation and recovery behaviors observed in experiment. However, a compound drop model has gained some success. In the present work, we investigate the effect of nucleus size and position, and the relative rheological properties of cytoplasm and nucleus, on cell recovery dynamics. Two nucleus sizes corresponding to that of neutrophil and lymphocyte are considered. Direct comparison between numerical simulations and experimental observation is made. Results indicate that the time scale ratio between the nucleus and cytoplasm plays an important role in cell recovery characteristics. Comparable time scales between the two cell components yield favorable agreement in recovery rates between numerical and experimental observations; disparate time scales, on the other hand, result in recovery behavior and cell shapes inconsistent with experiments. Furthermore, it is found that the nucleus eccentricity exhibits minimum influence on all major aspects of the cell recovery characteristics. The present work offers additional evidence in support of the compound cell model for predicting the rheological behavior of leukocytes. © 1999 Biomedical Engineering Society. PAC99: 8717-d, 8719Tt
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 6 (1986), S. 861-882 
    ISSN: 0271-2091
    Keywords: Three Dimensional Flow ; Turbine Draft Tube ; Curvilinear Co-ordinates ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The three-dimensional turbulent flow in a curved hydraulic turbine draft tube is studied numerically. The analysis is based on the steady Reynolds-averaged Navier-Stokes equations closed with the κ-ε model. The governing equations are discretized by a conservative finite volume formulation on a non-orthogonal body-fitted co-ordinate system. Two grid systems, one with 34 × 16 × 12 nodes and another with 50 × 30 × 22 nodes, have been used and the results from them are compared. In terms of computing effort, the number of iterations needed to yield the same degree of convergence is found to be proportional to the square root of the total number of nodes employed, which is consistent with an earlier study made for two-dimensional flows using the same algorithm. Calculations have been performed over a wide range of inlet swirl, using both the hybrid and second-order upwind schemes on coarse and fine grids. The addition of inlet swirl is found to eliminate the stalling characteristics in the downstream region and modify the behaviour of the flow markedly in the elbow region, thereby affecting the overall pressure recovery noticeably. The recovery factor increases up to a swirl ratio of about 0·75, and then drops off. Although the general trends obtained with both finite difference operators are in agreement, the quantitative values as well as some of the fine flow structures can differ. Many of the detailed features observed on the fine grid system are smeared out on the coarse grid system, pointing out the necessity of both a good finite difference operator and a good grid distribution for an accurate result.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...