Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Conifer ; Epidermis ; Fiber-optic ; Optical properties ; Ozone depletion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The unprecedented rate of depletion of the stratospheric ozone layer will likely lead to appreciable increases in the amount of ultraviolet-B radiation (UV-B, 280–320 nm) reaching the earth's surface. In plants, photosynthetic reactions and nucleic acids in the mesophyll of leaves are deleteriously affected by UV-B. We used a fiber-optic microprobe to make direct measurements of the amount of UV-B reaching these potential targets in the mesophyll of intact foliage. A comparison of foliage from a diverse group of Rocky Mountain plants enabled us to assess whether the foliage of some plant life forms appeared more effective at screening UV-B radiation. The leaf epidermis of herbaceous dicots was particularly ineffective at attenuating UV-B; epidermal transmittance ranged from 18–41% and UV-B reached 40–145 μm into the mesophyll or photosynthetic tissue. In contrast to herbaceous dicots, the epidermis of 1-year old conifer needles attenuated essentially all incident UV-B and virtually none of this radiation reached the mesophyll. Although the epidermal layer was appreciably thinner in older needles (7 y) at high elevations (Krumholtz), essentially all incident UV-B was attenuated by the epidermis in these needles. The same epidermal screening effectiveness was observed after removal of epicuticular waxes with chloroform. Leaves of woody dicots and grasses appeared intermediate between herbaceous dicots and conifers in their UV-B screening abilities with 3–12% of the incident UV-B reaching the mesophyll. These large differences in UV-B screening effectiveness suggest that certain plant life forms may be more predisposed than others to meet the challenge of higher UV-B levels resulting from stratospheric ozone depletion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...