Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Corpus callosum  (1)
  • Immunocytochemistry  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 55 (1984), S. 9-25 
    ISSN: 1432-1106
    Keywords: Visual development ; Corpus callosum ; Superior colliculus lesions ; Axonal tracing ; HRP ; Autoradiography ; Hamster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Visual callosal connections were examined using autoradiographic (ARG) and horse-radish peroxidase (HRP) techniques in normal adult hamsters, and in adults subjected to ablation of the superficial tectal laminae at birth. Additional ARG and HRP experiments were carried out in hamsters 1–27 days of age in order to describe the normal development of this pathway. Neonatal collicular lesions, which deprived visual cortical neurons of a major terminal zone in the midbrain, substantially altered the visual callosal pathway. In the lesioned animals, the numbers of supragranular callosal cells in the 17–18a border region and lamina VI callosal neurons in medial area 17 were significantly greater than normal. The ARG experiments demonstrated additional clearcut abnormalities in the visual callosal pathway of the lesioned hamsters. First, the mediolateral extent of the supragranular callosal zone around the 17–18a border was increased. Secondly, dense label was visible over lower layer V and lamina VI throughout area 17. Finally, labelling in lamina I could also be observed across the entire mediolateral extent of area 17. Experiments in the developing hamsters suggested that some of the abnormalities observed in the lesioned animals may have resulted from the maintenance of normally transient developmental states. During the first postnatal week, both callosal cells and anterograde labelling were evenly distributed throughout the dorsal posterior neocortex, but only in the subplate region. During the second postnatal week, supragranular callosal cells were also labelled in both medial and lateral area 17, but from their first appearance, they were always most numerous in the 17–18a border region. At the same time callosal axons invaded the supragranular laminae, but only near the 17–18a border. By the end of the second postnatal week, the visual callosal pathway was very similar to that in the adult.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Superior colliculus ; Immunocytochemistry ; Serotonin ; Hamster ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Immunocytochemistry for serotonin (5-HT) was carried out in both hamsters and rats in order to determine whether or not 5-HT-positive cells existed in the superior colliculus (SC) of either species. In both hamster and rat, the superficial and deep SC laminae contained dense networks of 5-HT-positive fibers. The rat's SC contained no 5-HT-positive neurons. In hamster, numerous 5-HT-immunoreactive cells were visible throughout the depth of the stratum griseum superficiale (SGS). These neurons had a variety of morphological characteristics and included marginal cells, horizontal cells, and neurons with vertically oriented dendritic trees. No 5-HT-positive neurons were found in any other portion of the hamster's SC. 5-HT-positive SC cells were observed with antisera from two different sources and they were not seen in animals that were pretreated with reserpine. Pretreatment with fluoxetine (an inhibitor of 5-HT uptake) also resulted in a disappearance of 5-HT-positive neurons in the hamster's SC. This result indicated that “serotonergic” cells in the colliculus of this species are capable of taking up, but probably not synthesizing, this indoleamine. The dorsal and ventral lateral geniculate nuclei (LGNd and LGNv, respectively) both contain numerous 5-HT-positive fibers and both of these structures receive input from the SGS. Combination of retrograde tracing with fluorogold and immunocytochemistry indicated that 5-HT-accumulating SC neurons were not the source of these fibers. Unilateral ablation of the superficial SC laminae also failed to reduce 5-HT immunoreactivity in either the LGNd or LGNv. These results are consistent with the possibility that 5-HT-accumulating cells in the hamster's SC may be interneurons that take up this transmitter after it is released by afferents to this nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...