Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 122 (1995), S. 1-14 
    ISSN: 1432-2072
    Keywords: Rat ; Development ; Behavior ; Cannabis ; Delta-9-tetrahydrocannabinol ; Motor activity ; Place preference ; Grooming ; Corticosterone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cannabis sativa preparations (hashish, marijuana) are the most widely used illicit drugs during pregnancy in Western countries. The possible long-term consequences for the child of in utero exposure to cannabis derivatives are still poorly understood. Animal models of perinatal cannabinoid exposure provide a useful tool for examining the developmental effects of cannabinoids. Behavioral consequences of maternal exposure to either cannabis preparations or to its main psychoactive component, Δ9-tetrahydrocannabinol (THC) in rat models are reviewed in this paper. Maternal exposure to cannabinoids resulted in alteration in the pattern of ontogeny of spontaneous locomotor and exploratory behavior in the offspring. Adult animals exposed during gestational and lactational periods exhibited persistent alterations in the behavioral response to novelty, social interactions, sexual orientation and sexual behavior. They also showed a lack of habituation and reactivity to different illumination conditions. Adult offspring of both sexes also displayed a characteristic increase in spontaneous and water-induced grooming behavior. Some of the effects were dependent on the sex of the animals being studied, and the dose of cannabinoid administered to the mother during gestational and lactational periods. Maternal exposure to low doses of THC sensitized the adult offspring of both sexes to the reinforcing effects of morphine, as measured in a conditioned place preference paradigm. The existence of sexual dimorphisms on the developmental effects of cannabinoids, the role of sex steroids, glucocorticoids, and pituitary hormones, the possible participation of cortical projecting monoaminergic systems, and the mediation of the recently described cannabinoid receptors are also analyzed. The information obtained in animal studies is compared to the few data available on the long-term behavioral and cognitive effects on in utero exposure to cannabis in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: Prolactin ; striatum ; limbic forebrain ; dopamine ; DOPAC ; tyrosine hydroxylase ; D1 and D2 receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the present study we examined the effects of intracerebroventricular (i.c.v.) injections of prolactin (PRL) on the presynaptic activity and postsynaptic sensitivity of mesolimbic and nigrostriatal dopaminergic neurons. In addition, the effects of PRL onin vitro release of dopamine (DA) from perifused striatal fragments were examined. Tyrosine hydroxylase (TH) activity and D2 receptor density in the striatum decreased after i.c.v. PRL administration; this was accompanied by an increase in D2 receptor affinity. These effects occurred after i.c.v. administration of PRL to normoprolactinemic rats, although normally they did not appear after administration to animals with pituitary grafting-induced hyperprolactinemia. Thus, in these animals, i.c.v. PRL failed to decrease TH activity and D1 and D2 receptor densities to a significant extent. In the case of D2 receptors, this was probably due to the fact that pituitary grafting-induced hyperprolactinemia itself was able to reduce the density of this receptor. No changes were observed in DA or L-3, 4-dihydroxyphenylacetic acid (DO-PAC) contents after i.c.v. administration of PRL to both normo- and hyperprolactinemic animals. Basal and K+-evoked DA releasein vitro from perifused striatal fragments of normoprolactinemic rats were not affected by the addition of PRL, whereas this hormone enhanced K+-evoked DA release when added to perifused striatal fragments from hyperprolactinemic animals. In the limbic forebrain, i.c.v. administration of PRL to normoprolactinemic animals produced a decrease in DA and DOPAC contents and D1 receptor density. Interestingly, none of these effects appeared when PRL was injected to hyperprolactinemic animals. In summary, our results suggest a possible inhibitory role of PRL on the activity of both the nigrostriatal and mesolimbic dopaminergic neuronal systems. These inhibitory effects were reflected in the decreases elicited in a set of neurochemical parameters, indicating either presynaptic activity or postsynaptic sensitivity, after i.c.v.-administered PRL. This observation supports the hypothesis of a possible neuromodulatory role for an extrapituitary PRL on the activity of these neurons, although the fact that most of these effects did not appear when i.c.v. administration was performed in hyperprolactinemic rats also suggests that they are influenced by peripheral PRL levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...