Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 168 (1986), S. 84-93 
    ISSN: 1432-2048
    Keywords: Benson-Calvin cycle ; Phosphate and photosynthesis ; Photosynthesis ; Photorespiration ; Spinacia (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of phosphate feeding on the influence of low (2%) oxygen on photosynthetic carbon assimilation has been investigated in leaf discs of spinach (Spinacia oleracea L.) at 12°C. The following observations were made. First, after the transition from 20% O2 to 2% O2, the rate of CO2 uptake was inhibited at CO2 concentrations between about 250 and about 800 μl CO2·l-1. Second, phosphate feeding stimulated the rate of CO2 uptake in 20% O2 at higher concentrations of CO2 (500–900 μl·l-1). Third, phosphate feeding stimulated the rate of CO2 uptake in 2% O2 at all but the highest (900 μl·l-1) and lowest 74 (μl·l-1) concentrations of CO2 employed. Phosphate thereby restored the stimulation of photosynthesis by 2% O2 and it did so over a wide range of lower temperatures. Fourth, oscillatory behaviour, however generated, was dampened by phosphate feeding, even at very low concentrations of CO2. Contents of leaf metabolites were measured during the transition to 2% O2 in control and phosphate-fed leaf discs. During this period the ratio glycerate-3-phosphate/triose phosphate rose steeply, but fell again only in the phosphate-treated leaf discs. These data, taken together with measured ATP/ADP ratios, showed that assimilatory power, the ratio [ATP]·[NAD(P)H]/[ADP]·[Pi]·[NAD(P)], decreased when leaves were exposed to 2% O2, but that this decrease was minimised by previous feeding of phosphate. The mechanism of phosphate limitation is discussed in the light of the results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 140 (1978), S. 275-282 
    ISSN: 1432-2048
    Keywords: Cotyledons ; CO2 dark fixation ; Cucurbita ; Gluconeogenesis ; RUDP carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We did this work to discover the pathway of CO2 fixation into sugars in the dark during gluconeogenesis by the cotyledons of 5-day-old seedlings of Cucurbita pepo L. We paid particular attention to the possibility of a contribution from ribulosebisphosphate carboxylase. The detailed distribution of 14C after exposure of excised cotyledons to 14CO2 in the dark was determined in a series of pulse and chase experiments. After 4s in 14CO2, 89% of the 14C fixed was in malate and aspartate. In longer exposures, and in chases in 12CO2, label appeared in alanine, phosphoenolpyruvate, 3-phosphoglycerate and sugar phosphates, and accumulated in sugars. The transfer of label from C-4 acids to sugars was restricted by inhibition of phosphoenolpyruvate carboxykinase in vivo by 3-mercaptopicolinic acid. We conclude as follows. Initial fixation of CO2 in the dark is almost entirely into phosphoenolpyruvate, probably via phosphoenolpyruvate carboxylase (EC 4.1.1.31) which we showed to be present in appreciable amounts. Incorporation into sugars occurs chiefly, if not completely, as a result of randomization of the carboxyl groups of the C-4 acids and subsequent conversion of the oxaloacetate to sugars via the accepted sequence for gluconeogenesis. Ribulosebisphosphate carboxylase appears to make very little contribution to sugar synthesis from fat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...