Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-8744
    Keywords: fentanyl ; alfentanil ; physiological models ; regional blood flow ; tissue distribution ; tissue diffusion ; rats ; humans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The objectives of this investigation were to characterize the disposition of fentanyl and alfentanil in 14 tissues in the rat, and to create physiological pharmacokinetic models for these opioids that would be scalable to man. We first created a parametric submodel for the disposition of either drug in each tissue and then assembled these submodels into whole-body models. The disposition of fentanyl and alfentanil in the heart and brain and of fentanyl in the lungs could be described by perfusion-limited 1-compartment models. The disposition of both opioids in all other examined tissues was characterized by 2- or 3-compartment models. From these models, the extraction ratios of the opioids in the various tissues could be calculated, confirming the generally lower extraction of alfentanil as compared to fentanyl. Assembly of the single-tissue models resulted in a whole-body model for fentanyl that accurately described its disposition in the rat. A similar assembly of the tissue models for alfentanil revealed non-first-order elimination kinetics that were not apparent in the blood concentration data. Michaelis-Menten parameters for the hepatic metabolism of alfentanil were determined by iterative optimization of the entire model. The parametric models were finally scaled to describe the disposition of fentanyl and alfentanil in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-8744
    Keywords: fentanyl ; alfentanil ; physiological models ; regional blood flow ; tissue distribution ; tissue diffusion ; rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Traditionally, physiological pharmacokinetic models assume that arterial blood flow to tissue is the rate-limiting step in the transfer of drug into tissue parenchyma. When this assumption is made the tissue can be described as a well-stirred single compartment. This study presents the tissue washout concentration curves of the two opioid analgesics fentanyl and alfentanil after simultaneous 1-min iv infusions in the rat and explores the feasibility of characterizing their tissue pharmacokinetics, modeling each of the 12 tissues separately, by means of either a one-compartment model or a unit disposition function. The tissue and blood concentrations of the two opioids were measured by gas-liquid chromatography. The well-stirred one-compartment tissue model could reasonably predict the concentration-time course of fentanyl in the heart, pancreas, testes, muscle, and fat, and of alfentanil in the brain and heart only. In most other tissues, the initial uptake of the opioids was considerably lower than predicted by this model. The unit disposition functions of the opioids in each tissue could be estimated by nonparametric numerical deconvolution, using the arterial concentration times tissue blood flow as the input and measured tissue concentrations as the response function. The observed zero-time intercepts of the unit disposition functions were below the theoretical value of one, and were invariably lower for alfentanil than for fentanyl. These findings can be explained by the existence of diffusion barriers within the tissues and they also indicate that alfentanil is less efficiently extracted by the tissue parenchyma than the more lipophilic compound fentanyl. The individual unit disposition functions obtained for fentanyl and alfentanil in 12 rat tissues provide a starting point for the development of models of intratissue kinetics of these opioids. These submodels can then be assembled into full physiological models of drug disposition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 26 (1998), S. 363-383 
    ISSN: 1573-8744
    Keywords: concentration–effect relationship ; enantiomers ; stereospecific analysis ; chiral inversion ; thalidomide ; sedative effects ; continuous reaction times ; logistic regression ; Cox regression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract This study investigated the sedative effects of the enantiomers of thalidomide in humans. Since the enantiomers undergo chiral inversion in vivo this entailed application of suitable statistical methodology to distinguish the effects of each enantiomer in the presence of the other one. Six healthy male volunteers received single oral doses of (+)-(R)-thalidomide, (−)-(S)-thalidomide or racemic thalidomide in a double-blind study, and the results of this study were compared with those of a similar study where three subjects received (+)-(R)-thalidomide, (−)-(S)-thalidomide or placebo in a double-blind fashion. Blood samples for analysis of (+)-(R)-thalidomide and (−)-(S)-thalidomide were obtained. Prior to sampling it was noted whether the subject was awake or asleep, and his feelings of tiredness and heaviness were estimated using Borg scales. After blood sampling continuous reaction time was measured by a 10-min series of auditory signals. The concentration–effect relationships were analyzed by logistic regression techniques and Cox regression for the reaction time data. The (+)-(R)-thalidomide concentrations, but not the (−)-(S)-thalidomide concentrations, exhibited significant positive influences on all sedative effects studied (sleep, tiredness, and reaction times). In some of the analyses of reaction times the (−)-(S)-thalidomide concentrations had a significant effect in the opposite direction. The time course and intensity of sedative effect is thus influenced by which enantiomer is administered and by the kinetics of in vivo chiral inversion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...