Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Critical effective population size Inbreeding depression  (1)
  • Phenotypic correlations  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 89 (1994), S. 1019-1026 
    ISSN: 1432-2242
    Keywords: Critical effective population size Inbreeding depression ; Natural selection ; Fitness Conservational biology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In livestock populations, fitness may decrease due to inbreeding depression or as a negatively correlated response to artificial selection. On the other hand, fitness may increase due to natural selection. In the absence of a correlated response due to artificial selection, the critical population size at which the increase due to natural selection and the decrease due to inbreeding depression balance each other is approximately D/2σwa 2, where D=the inbreeding depression of fitness with complete inbreeding, and σwa 2=the additive genetic variance of fitness. This simple expression agrees well with results from transmission probability matrix methods. If fitness declines as a correlated negative response to artificial selection, then a large increase in the critical effective population size is needed. However, if the negative response is larger than the response to natural selection, a reduction in fitness cannot be prevented. From these results it is concluded that a negative correlation between artificial and natural selection should be avoided. Effective sizes to prevent a decline in fitness are usually larger than those which maximize genetic gain of overall efficiency, i.e., the former is a more stringent restriction on effective size. In the examples presented, effective sizes ranged from 31 to 250 animals per generation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Key words Age-age genetic correlations ; Phenotypic correlations ; Conifers ; Tree breeding ; Woody perennials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A meta-analysis of 520 parents and 51,439 individuals was used to develop two equations for predicting age-age genetic correlations in Pinus taeda L. Genetic and phenotypic family mean correlations and heritabilities were estimated for ages ranging from 2 to 25 years on 31 sites in the southern U.S. and Zimbabwe. Equations for predicting age-age correlations based on P. taeda populations from west and east of the Mississippi River proved statistically different. Both predictive equations proved conservative for validation datasets consisting of younger tests in the U.S. and Zimbabwe. Age-dependent log-linear predictive equations were favored over growth-dependent equations. All P. taeda predictive equations based on genetic correlations favored earlier selection when compared to a generalized conifer predictive equation based on phenotypic correlations. The age-age correlations structure showed stability independent of planting density and across a wide range of family sizes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...