Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Crustacean cardioactive peptide (CCAP) ; Insect nervous system ; Identified neurons ; Neuropeptide immunocytochemistry ; Locusta migratoria (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Crustacean cardioactive peptide (CCAP) ; Proctolin ; FMRFamide ; Leu-enkephalin ; Immunocytochemistry ; Ultrastructural immunogold-labeling ; Pericardial organs ; Neurosecretion ; Carcinus maenas (Crustacea)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Polyclonal antibodies were raised in rabbits against synthetic crustacean cardioactive peptide (CCAP) conjugated to bovine thyroglobulin, and were used to map CCAP-immunoreactive structures in the central nervous system of Carcinus maenas. As expected, the neurohemal pericardial organs (PO) displayed abundant immunoreactivity in nerve fibers and terminals. In addition, immunoreactive neurons were demonstrated in other parts of the nervous system. At least some of them do not appear to terminate in neurohemal structures and may have a non-endocrine, as yet unknown function. Immunoreactive perikarya with a diameter of 25–30 μm occur in the brain. They project into the optic and antennary neuropil, and into the eyestalk. One cell was found in the medulla terminalis of the eyestalk and in the connective ganglion, respectively. From the latter, axonal branches could be traced into the brain and the thoracic ganglia (TG). In the TG, small-diameter perikarya give rise to extensive networks of varicose fibers. Some of the perikarya occur in a characteristic paired arrangement with larger CCAP-immunoreactive somata (diameter 40–50 μm). These pairs of one small and one large cell occur in all mouthpart and leg segments of the TG, except the abdominal ganglia (AG), where only large cells were found. The main projections of the large neurons comprise one or more fibers in each of the seven segmental nerves (SN), leading to neurosecretory terminals in the PO. The fibers in the SN are joined by branches of an ascending axonal tract from the large perikarya in the AG. The large-type perikarya are considered to be the principal source of CCAP in the PO. The optic ganglia in the eyestalk, except the medulla terminalis, the neurohemal sinus gland and the stomatogastric nervous system are devoid of CCAP-immunoreactivity. In axon terminals of the PO, CCAP is not colocalized with other PO-neuropeptides, i.e. proctolin-, FMRFamide-like, and Leu-enkephalin-like immunoreactive materials. Electron-microscopic immunocytochemistry revealed a distinct CCAP-containing granule type in specific axon profiles and terminals in the PO. The architecture of CCAP-immunoreactive neurons is discussed with respect to previous morphological studies on the origin and pathways of fibers terminating in the PO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Crustacean cardioactive peptide (CCAP) ; Development, ontogenetic ; Identified neurons ; Neuronal pattern ; Neuropeptide immunocytochemistry ; Tenebrio molitor (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary By use of an antiserum against the crustacean cardioactive peptide (CCAP) several types of bilaterally symmetrical neurons have been mapped quantitatively in the ventral nerve cord and in the brain of the meal beetle, Tenebrio molitor. The general architecture of these neurons was reconstructed from peroxidase-antiperoxidase-labelled whole-mount preparations. From the subesophageal to the seventh abdominal ganglia two types of neurons show a repetitive organization of contralateral projection patterns in each neuromere. The first type has few branches in the central neuropil and a distinct peripheral projection. The second type is characterized by an elaborate central branching pattern, which includes ascending and descending processes. Some of its peripheral branches were found to supply peripheral neurohemal areas. In the protocerebrum, 10 CCAP-immunoreactive neurons occur with projections into the superior median protocerebrum and the tritocerebrum. Immunopositive neurons were mapped in larval and various pupal stages, as well as in the adult. All types of identified neurons were found to persist throughout metamorphosis maintaining their essential structural and topological characteristics. The CCAP-immunoreactive neurons of T. molitor are compared with those described for the locust. Putative structural homologies of subsets of neurons in both species are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Crustacean cardioactive peptide (CCAP) ; Neuropeptide immunocytochemistry ; Orconectes limosus, Astacus leptodactylus, Astacus astacus, Procambarus clarkii (Crustacea)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Three distinct clusters of crustacean cardioactive-peptide-immunoreactive neurones occur in the terminal abdominal ganglion of the crayfish species Orconectes limosus, Astacus leptodactylus, Astacus astacus and Procambarus clarkii, as revealed by immunocytochemistry of whole-mount preparations and sections. They exhibit similar topology and projection patterns in all four studied species. An anterior ventral lateral and a posterior lateral cluster contain one small, strongly stained perikaryon and two large, less intensely stained perikarya, each showing contralateral projections. A posterior medial lateral cluster of up to six cells also contains these two types of perikarya. Whereas the small type perikarya belong to putative interneurones, the large type perikarya give rise to extensive neurohaemal plexuses in perineural sheaths of the third roots of the fifth abdominal ganglia, the connectives, the dorsal telson nerves, the ganglion itself, its roots and arteriolar supply. Thin fibres from these plexuses reach newly discovered putative neurohaemal areas around the hindgut and anus via the intestinal and the anal nerves, and directly innervate the phasic telson musculature. A comparison with earlier investigations of motoneurones and segmentation indicates that these three cell groups containing putative neurosecretory neurones may be members of at least three neuromeres in this ganglion. Crustacean cardioactive peptide released from these neurones may participate in the neurohumoral and modulatory control of different neuronal and muscle targets, thereby exceeding its previously established hindgut and heart excitatory effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...