Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-136X
    Keywords: Key words Freeze tolerance ; Sciatic nerve ; Cryoinjury ; Dehydration ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract We investigated function and ultrastructure of sciatic nerves isolated from wood frogs (Rana sylvatica) endemic to the Northwest Territories, Canada, following freezing at −2.5 °C, −5.0 °C, or −7.5 °C. All frogs frozen at −2.5 °C, and most frogs (71%) frozen at −5.0 °C, recovered within 14 h after thawing began; however, frogs did not survive exposure to −7.5 °C. Sciatic nerves isolated from frogs frozen at −7.5 °C were refractory to electrical stimulation, whereas those obtained from frogs surviving exposure to −2.5 °C or −5.0 °C generally exhibited normal characteristics of compound action potentials. Frogs responded to freezing by mobilizing hepatic glycogen reserves to synthesize the cryoprotectant glucose, which increased 20-fold in the liver and 40-fold in the blood. Ultrastructural analyses of nerves harvested from frogs in each treatment group revealed that freezing at −2.5 °C or −5.0 °C had little or no effect on tissue and cellular organization, but that (lethal) exposure to −7.5 °C resulted in marked shrinkage of the axon, degeneration of mitochondria within the axoplasm, and extensive delamination of myelin sheaths of the surrounding Schwann cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...