Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cutaneous sensibility  (2)
  • Somatosensory input  (2)
  • 1
    ISSN: 1432-1106
    Keywords: Precision grip ; Motor control ; Human hand ; Somatosensory input ; Long latency reflexes ; Motor programs ; Sensorimotor memory ; Mechanoreceptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Small objects were lifted from a table, held in the air, and replaced using the precision grip between the index finger and thumb. The adaptation of motor commands to variations in the object's weight and sensori-motor mechanisms responsible for optimum performance of the transition between the various phases of the task were examined. The lifting movement involved mainly a flexion of the elbow joint. The grip force, the load force (vertical lifting force) and the vertical position were measured. Electromyographic activity (e.m.g.) was recorded from four antagonist pairs of hand/arm muscles primarily influencing the grip force or the load force. In the lifting series with constant weight, the force development was adequately programmed for the current weight during the loading phase (i.e. the phase of parallel increase in the load and grip forces during isometric conditions before the lift-off). The grip and load force rate trajectories were mainly single-peaked, bell-shaped and roughly proportional to the final force. In the lifting series with unexpected weight changes between lifts, it was established that these force rate profiles were programmed on the basis of the previous weight. Consequently, with lifts programmed for a lighter weight the object did not move at the end of the continuous force increase. Then the forces increased in a discontinous fashion until the force of gravity was overcome. With lifts programmed for a heavier weight, the high load and grip force rates at the moment the load force overcame the force of gravity caused a pronounced positional overshoot and a high grip force peak, respectively. In these conditions the erroneous programmed commands were automatically terminated by somatosensory signals elicited by the start of the movement. A similar triggering by somatosensory information applied to the release of programmed motor commands accounting for the unloading phase (i.e. the parallel decrease in the grip and load forces after the object contacted the table following its replacement). These commands were always adequately programmed for the weight.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 71 (1988), S. 72-86 
    ISSN: 1432-1106
    Keywords: Precision grip ; Motor control ; Human hand ; Somatosensory input ; Long-latency reactions ; Anticipatory mechanisms ; Sensori-motor memory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A test object (grip apparatus) was held at its upper part using a precision grip. Small balls were dropped into a target cup at the bottom of the apparatus. The grip force, the load force (vertical lifting force) and the vertical movement were measured. Electromyographic activity (e.m.g.) was recorded from four antagonist pairs of hand/arm muscles primarily influencing the grip force or the load force. The balls were dropped either by the subject during a bimanual task, or unexpectedly by the experimenter. When the subject dropped the ball, preparatory actions occurred before the rapid increase in the vertical load caused by the impact. These actions appeared ca. 150 ms prior to the impact and involved a grip force increase and a lifting movement of the grip apparatus. The e.m.g. activity increased in all eight of the hand and arm muscles, indicating a general stiffening of the hand/arm system prior to the impact. Furthermore, the preparatory actions were programmed adequately for the size of the load force step at the impact, i.e. an adequate safety margin to prevent slips was preserved during the critical period of the impact. Thus, variations in this step caused by changes in (i) the weight of ball, (ii) the weight of the grip apparatus and (iii) the length of the drop were adequately taken into account during the programming of these actions. In addition, the frictional condition between the skin and the grip surface was also taken into account. The relevant sensory information apparently was obtained during the handling of the ball and the grip apparatus prior to the drop. There were also task-related automatic muscle responses triggered by the impact. These responses, which also served to stiffen the hand/arm system, were most pronounced during unexpected load changes, but they appeared too late to prevent slips. However, if no overall slip occurred, the triggered responses were functional in the sense that they helped to quickly restore the safety margin and the vertical position of the object.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 72 (1988), S. 204-208 
    ISSN: 1432-1106
    Keywords: Mechanoreceptors ; Man ; Face ; Infraorbital nerve ; Microneurography ; Trigeminal nerve ; Tactile sensibility ; Cutaneous sensibility ; Oral mucosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The feasibility of adopting the microneurography technique (Vallbo and Hagbarth 1968) as a tool to investigate the mechanoreceptive innervation of peri- and intra-oral tissues was explored. Multi-unit activity and impulses in single nerve fibers were recorded from the infraorbital nerve in healthy volunteers. The innervation territories of individual nerve fascicles were mapped. These varied considerably but most fascicle fields comprised the corner of the mouth. Twenty-four single mechanoreceptive units were recorded. Eighteen innervated the skin of the face, and six innervated the mucous membranes of the lips or cheeks. A majority of the mechanoreceptive afferent units were slowly adapting with small and well defined receptive fields. It is suggested that the various slowly adapting responses may originate from two different types of afferent units. No afferents showed response properties similar to typical Pacinian-corpuscle afferents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Mechanoreceptors ; Man ; Infraorbital nerve ; Microneurography ; Trigeminal nerve ; Speech gestures ; Mandibular movements ; Chewing ; Tactile sensibility ; Cutaneous sensibility ; Oral mucosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The method of microneurography was used to record activity in trigeminal cutaneous and mucosal mechanoreceptive afferents during natural orofacial behaviors such as speech gestures, chewing, licking and swallowing. Multi-unit activity and impulses in single nerve fibers were recorded from the infraorbital nerve. It appeared that these mechanoreceptors respond to contact between the lips, air pressures generated for speech sounds, and to the deformation/strain changes of the facial skin and mucosa associated with various phases of voluntary lip and jaw movements. The relatively vigorous discharge of cutaneous and mucosal afferents during natural movements of the face are consistent with the claim that mechanoreceptors found within the facial skin provide proprioceptive information on facial movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...