Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1017
    Keywords: Key words Paramagnetic proteins ; Cytochromes ; Solution structure ; NMR ; Dipolar interactions ; Magnetic properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Standard procedures for using nuclear Overhauser enhancements (NOE) between protons to generate structures for diamagnetic proteins in solution from NMR data may be supplemented by using dipolar shifts if the protein is paramagnetic. This is advantageous since the electron-nuclear dipolar coupling provides relatively long-range geometric information with respect to the paramagnetic centre which complements the short-range distance constraints from NOEs. Several different strategies have been developed to date, but none of these attempts to combine data from NOEs and dipolar shifts in the initial stages of structure calculation or to determine three dimensional protein structures together with their magnetic properties. This work shows that the magnetic and atomic structures are highly correlated and that it is important to have additional constraints both to provide starting parameters for the magnetic properties and to improve the definition of the best fit. Useful parameters can be obtained for haem proteins from Fermi contact shifts; this approach is compared with a new method based on the analysis of dipolar shifts in haem methyl groups with respect to data from horse and tuna ferricytochromes c. The methods developed for using data from NOEs and dipolar shifts have been incorporated in a new computer program, PARADYANA, which is demonstrated in application to a model data set for the sequence of the haem octapeptide known as microperoxidase-8.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Peroxidases ; Haem proteins ; 13C-NMR ; Fermi contact shift ; Electronic structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The chemical shifts of several 13C nuclei positioned α to the haems in oxidised cyanide complexes of horseradish peroxidase and lignin peroxidase are reported and analysed in terms of π molecular orbitals with perturbed D4h symmetry. The additional contributions to the paramagnetic shifts of 13C nuclei in the vinyl groups which arise from conjugation with the porphyrin π molecular orbitals are discussed, and an empirical correction factor is derived from a number of other compounds which contain haems b. The orbital mixing parameter which is obtained from the analysis of the experimental 13C shifts is compared with the orientation of the axial histidine ligands in X-ray structures of related compounds and found to be close to the orientation of the normal to the histidine ring. Comparison with the magnetic axes determined by fitting the dipolar shifts of several protons which have been assigned previously also shows close agreement with the negative in-plane rotation of the magnetic y axis. It is therefore possible to obtain the approximate orientation of the magnetic axes from 13C resonances of the haem and hence to determine the dipolar shifts at any point in space with respect to the haem by using these axes together with the anisotropy of the magnetic susceptibility, which can be obtained by extrapolation from EPR g values. Excellent agreement is found between dipolar shifts obtained by fitting an empirical magnetic susceptibility tensor and predictions based on 13C NMR and EPR in the case of lignin peroxidase. The agreement is less good in the case of horseradish peroxidase, in which the empirical magnetic z axis appears to be tilted significantly away from the haem normal, though this may be due in part to the lack of accurate atomic coordinates. It is concluded that useful estimates of the magnetic susceptibility tensor may be obtained from 13C NMR and EPR studies even in large mammalian peroxidases for which no structural models are available.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...