Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 152 (1981), S. 215-224 
    ISSN: 1432-2048
    Keywords: Bromodeoxyuridine tolerance ; Bromouracil excision ; Cytokinin autotrophy ; DNA synthesis ; Fluorodeoxyuridine effect ; Nicotiana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA isolated from various Nicotiana tabacum cell types, differing in their degree of hormone autotrophy and incubated in the presence of bromodeoxyuridine (BrdUrd), was analyzed by isopycnic CsCl gradient centrifugation. All cell types incorporate BrdUrd into DNA in such a way that hybrid DNA is formed with 60–80% of thymine (Thy) residues replaced by bromouracil (BrUra) in the newly synthesized strand. This DNA is not replicated further under ordinary culture conditions. Whereas in “normal” hormone-dependent cells this state is final and cells necrotize, in tumor (cytokinin-auxin autotrophic) and cytokinin-autotrophic cells a mechanism is induced leading to the reduction of BrUra content in DNA. As a result a decrease in the buoyant density (in CsCl) of BrUra DNA can be observed. In the case of cytokinin-autotrophic cells supplemented with kinetin, the buoyant density of the whole DNA decreases gradually to the value of that of unsubstituted DNA, but specific radioactivities of different DNA fractions reflect the retention of the pyrimidine ring of BrUra in DNA. This is interpreted as debromination of DNA in situ. The process can be inhibited by fluorodeoxyuridine (FdUrd) and deoxycytidine (dCyd). Moreover, FdUrd (but not dCyd) allows replication of hybrid DNA in tumor cells in such a way that HH DNA with all Thy residues replaced by BrUra is formed. For cytokinin-autotrophic cells FdUrd and kinetin are required. In hormone-dependent cells replication of hybrid DNA cannot be induced under any conditions. Most of these conclusions complement our previous findings that BrdUrd tolerance in hormone-autotrophic tobacco cells in hormone controlled. It is postulated that a modulation of thymidylate synthetase specificity is one factor affecting the level of BrUra substitution in DNA. The possibility of cytokinins being involved in the control of DNA synthesis is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 214-230 
    ISSN: 0192-253X
    Keywords: Sex determination ; angiosperms ; genetics ; white campion ; sex chromosomes ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Most flowering plant species are hermaphroditic, but a small number of species in most plant families are unisexual (i.e., an individ-ual will produce only male or female gametes). Because species with unisexual flowers have evolved repeatedly from hermaphroditic progenitors, the mechanisms controlling sex determination in flowering plants are extremely diverse. Sex is most strongly determined by genotype in all species but the mechanisms range from a single controlling locus to sex chromosomes bearing several linked locirequired for sex determination. Plant hormones also influence sex expression with variable effects from species to species. Here, we review the genetic control of sex determination from a number of plant species to illustrate the variety of extant mechanisms. We emphasize species that are now used as models to investigate the molecular biology of sex determination. We also present our own investigations of the structure of plant sex chromosomes of white campion (Silene latifolia - Melan-drium album). The cytogenetic basis of sex determination in white campion is similar to mammals in that it has a male-specific Y-chromosome that carries dominant male determining genes. If one copy of this chromosome is in the genome, the plant is male. Otherwise it is female. Like mammalian Y-chromosomes, the white campion Y-chromosome is rich in repetitive DNA. We isolated repetitive sequences from microdissected Y-chromosomes of white campion to study the distribution of homologous repeated sequences on the Y-chromosome and the other chromosomes. We found the Y to be especially rich in repetitive sequences that were generally dispersed over all the white campion chromosomes. Despite its repetitive character, the Y-chromosome is mainly euchromatic. This may be due to the relatively recent evolution of the white campion sex chromosomes compared to the sex chromosomes of animals. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...