Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Tight junctions ; Zonulae occludentes ; Choroid ; Fibroblasts ; Cytoskeleton ; Golden hamster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The lamina fusca of the hamster eye contains layers of flattened, slightly overlapping fibroblasts. Thin sections of the overlapping margins reveal punctate, tight-junction-like membrane appositions associated with accumulation of cytoplasmic filaments, 5–7 nm in diameter. Intermediate filaments are present in the surrounding cytoplasm. A diffuse dense substance occurs in adjacent intercellular space. Freeze-fracture replicas show that the membrane appositions are mainly single-stranded tight junctions, each composed of two fibrils (micelles), and each continuous or nearly continuous around the fibroblastic perimeter. Fracturing characteristics of these junctions offer a unique opportunity to gain further insight into tight junctional morphology. When exposed, the fibrils adhere to the P-face, measure 9.2±0.3 nm in diameter, and are accompanied by a narrow band of membrane differing in texture from non-junctional membrane. Characteristically, the junctional fibrils themselves mark the deviation line along which fracture planes pass from one membrane of the junction to the other. This pattern exposes, over long distances, the P-face of one membrane on one side of this line and E-face of the adjacent membrane on the other. Analysis of any single junction over such distances reveals that the juxtaposition of the fibrils may gradually twist or undulate over a range of at least 180° within the two involved membranes. The fracture plane appears preferentially to pass between the two junctional fibrils; association of the cytoskeleton with junctional fibrils may govern this route of fracture. Cytoskeletal attachment appears to be to a single fibril and may alternate from one fibroblast to the next depending on which cytoplasmic leaflet is nearest a given fibril.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Desmosomes ; Freeze-fracture ; Cytoskeleton ; Triton X-100 extraction ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary We have examined sections and freeze-fracture replicas of Triton X-100 detergent-extracted desmosomes from murine palatal epithelium. After extraction of lipids as well as soluble proteins, a cytoskeletal framework remained which consisted of intermediate filaments, microfilaments, and intact desmosomal skeletons. Traversing filaments, which link the intermediate filaments to large intramembrane particles of the P-face, appeared undisturbed within the desmosomal skeletons. Compared to unextracted controls, extracted specimens displayed P- and E-face desmosomal intramembrane particles which were more fully exposed. A broad range of sizes and shapes was apparent for the P-face associated particles. E-face particles, some of which were exposed for the first time, were more homogeneous and generally smaller. Statistical data gathered from a large sample of P- and E-face particle diameters disclosed significant differences among the populations of the two faces. Both fracture faces of extracted desmosomal domains displayed a residual surface upon which the exposed particles seemed to remain lodged. The newly revealed structural features are presented in an hypothetical molecular model which provides for both vertical and horizontal stabilization of desmosomal subcomponents. The model may ultimately be relatable to emerging biochemical characterization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...