Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Cell Biology  (2)
  • D-glucose transport  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 8 (1978), S. 269-277 
    ISSN: 0091-7419
    Keywords: dimethylmaleic anhydride ; cytochalasin B ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 9 (1978), S. 363-371 
    ISSN: 0091-7419
    Keywords: cytochalasin B ; insulin action ; adipocytes ; plasma membranes ; D-glucose transport ; protein reagents ; membrane reconstitution ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Sensitivity of the adipocyte D-glucose transport system in intact plasma membranes or following solubilization and reconstitution into phospholipid vesicles to several protein-modifying reagents was investigated. When intact plasma membranes were incubated with N-ethylmaleimide (20 mM) or fluorodinitrobenzene (4 mM), D-glucose transport activity was virtually abolished. However, washing the membranes free of unreacted reagents restored transport activity, indicating that covalent interaction with the membranes did not mediate the transport inhibition. Reaction of [3H] N-ethylmaleimide with plasma membranes under similar conditions resulted in extensive labeling of all protein fractions resolved on dodecyl sulfate gels. Similarly, addition of N-ethyl-maleimide to cholate-solubilized membrane protein had no effect on transport activity in artifical phospholipid vesicles reconstituted under conditions where the membrane protein was free of unreacted N-ethylmaleimide. Transport activity in plasma membranes was also inhibited by both reduced and oxidized dithiothreitol or glutathione (15 mM) in a readily reversible manner, consistent with a noncovalent mode of inhibition. Thus, the insulin-responsive adipocyte D-glucose transport system differs from the red cell hexose transport system in its remarkable insensitivity to modulation by covalent blockade of sulfhydryal or amino groups by the reagents studied.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...