Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 434 (1997), S. 151-158 
    ISSN: 1432-2013
    Schlagwort(e): Key words Inward rectifier ; Voltage-dependent block ; Distal nephron ; Selectivity ; Anomalous mole fraction
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract  ROMK1 is an inwardly rectifying K+ channel cloned from the outer medulla of rat kidney. We have determined the permeation and blocking characteristics for several monovalent cations in ROMK1 when expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique. The selectivity sequence for monovalent cations as determined by reversal potential changes under bi-ionic conditions was K+ 〉 Rb+ 〉 Cs+ = NH4+ 〉〉 Na+ = Li+. The conductivity for the two permeant ions K+ and Rb+ was a saturable function of the external concentration, with K m values of 11.5 ± 1.3 mmol l–1 (n = 19) and 47.3 ± 4.8 mmol l–1 (n = 19), respectively. With mixtures of K+ and Rb+, the conductance went through a clear minimum as the concentration ratio [Rb]/[K+Rb] was varied between 0 and 1. ROMK1 was blocked by both Cs+ and Ba2+ in a concentration- and voltage-dependent manner. The electrical distance (δ) at which Ba2+ and Cs+ blocked the channel was 0.41 and 0.69, respectively, suggesting that these two ions block at different sites within the pore. Taken together with previous reports, the results indicate that ROMK1 has a multi-ion pore, and that the N-terminus contributes to the pore structure.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Pflügers Archiv 428 (1994), S. 60-68 
    ISSN: 1432-2013
    Schlagwort(e): Volume regulation ; Calcium ; Barium ; DIDS ; Stretch-activated channel ; Protein kinase C
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract Cells respond to increases in volume by activating solute efflux pathways, resulting in water loss and restoration of the original cell volume. The solute efflux pathways underlying these volume regulatory decrease (VRD) responses have been relatively well studied. However, the transduction pathways whereby the change in cell volume is converted into an intracellular signal resulting in VRD are much less well understood. We have examined VRD in isolated proximal tubule cells from the frog, with particular attention to the roles of stretch-activated channels, Ca2+ and protein kinases. Cell length was taken as an index of cell volume, and was measured continuously using a photodiode array. VRD was observed in approximately 50% of cells, and was inhibited by Ba2+, Gd3+ and 4,4′-diisothiocyanatostilbene 2,2′-disulphonic acid (DIDS), and removal of extracellular Ca2+. VRD was accelerated by the active phorbol ester, phorbol 12-myristate 13-acetate (PMA), and the phosphatase inhibitor F−; on the other hand, VRD was prolonged by 4α-phorbol 12,13-didecanoate (PDC), an inactive phorbol ester), and inhibited by PMA and Gd3+, PMA and 0 Ca2+, and staurosporine. Volume regulation was unaffected by di-butyryl cAMP and 3-isobutyl-1-methyl-xanthene (IBMX). These data suggest that Ca2+ and PKC, via protein phosphorylation, play a stimulatory role in VRD.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...