Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 59 (1991), S. 65-76 
    ISSN: 1572-9699
    Keywords: anaerobic respiration ; FNR protein ; oxygen regulation ; gene expression ; E. coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Molecular oxygen is an important regulatory signal in facultative anaerobic bacteria and controles the expression of a great variety of genes positively or negatively. The expression of anaerobic respiration and of related functions of E. coli is controlled by the positive gene regulator FNR, which activates transcription in the absence of O2. The regulated genes carry a FNR consensus sequence upstream of the promoter. Under the same conditions FNR represses some of the genes of aerobic respiration. The binding to the DNA occurs by an α-helix-turn-α-helix DNA-binding domain. FNR contains 5 cysteine residues, four of which are arranged in a cluster close to the N-terminal end. For the function of FNR as a O2-dependent regulator three of the cysteine residues in the cluster and the residue outside the cluster are essential. FNR binds iron as a cofactor which most likely is involved in the O2-sensing by the protein. The experiments indicate that the cysteine residues are responsible for the binding of the iron. From the protein in vivo two functional states can be differentiated, an aerobic or metal-depleted form and an anaerobic form. Only the anaerobic form acts as a gene activator or repressor. Sensing of O2 or of positive redox potentials by the iron ion is thought to cause the conversion of the two functional states. The FNR protein in addition contains a potential nucleotide binding domain. The significance and function of this site is not clear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 277-281 
    ISSN: 1432-072X
    Keywords: DMSO respiration ; DMS production ; Anaerobic respiration ; Anaerobic regulation ; Wolinella succinogens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The anaerobic rumen bacterium Wolinella succinogenes was able to grow by respiration with dimethylsulphoxide (DMSO) as electron acceptor and formate or H2 as electron donors. The growth yield amounted to 6.7 g and 6.4 g dry cells/mol DMSO with formate or H2 as the donors, respectively. This suggested an ATP yield of about 0.7 mol ATP/mol DMSO. Cell homogenates and the membrane fraction contained DMSO reductase activity with a high K m (43 mM) for DMSO. The electron transport from H2 to DMSO in the membranes was inhibited by 2-(heptyl)-4-hydroxyquinoline N-oxide, indicating the participation of menaquinone. Formation of DMSO reductase activity occurred only during growth on DMSO, presence of other electron acceptors (fumarate, nitrate, nitrite, N2O, and sulphur) repressed the DMSO reductase activity. DMSO can therefore be used by W. succinogenes as an acceptor for phosphorylative electron transport, but other electron acceptors are used preferentially.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...