Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Fumarate respiration ; Nitrate respiration ; Nitrate ammonification ; Fermentation ; Anaerobic regulation ; Bacillus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Bacillus macerans, anaerobic respiratory pathways and the regulation of facultatively anaerobic catabolism by electron acceptors were analysed. In addition to fermentative growth, B. macerans was able to grow anaerobically by fumarate, trimethylamine N-oxide, nitrate, and nitrite respiration with glycerol as donor. During growth by fumarate respiration, a membrane-bound fumarate reductase was present that was different from succinate dehydrogenase. The end product of nitrate and nitrite respiration was ammonia. No N2 or NO and only traces of N2O could be detected. O2 repressed the activity of nitrate and fumarate reductases and the fermentation of glucose, presumably at the transcriptional level. Nitrate repressed fumarate reductase activity and partially glucose fermentation. Thus energy metabolism and the regulatory hierarchy with respect to the use of electron acceptors were very similar to that known from E. coli; B. macerans can be regarded as a truly facultative anaerobic bacterium. In addition, the anaerobic growth capabilities of some other Bacillus strains are described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 499-503 
    ISSN: 1432-072X
    Keywords: Menaquinone ; Demethylmenaquinone ; Anaerobic respiration ; fnr gene ; Escherichia coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Escherichia coli grown with glucose in the absence of added electron acceptors contained 3–4 times more naphthoquinones (menaquinone plus demethylmenaquinone) than in the presence of O2. Presence of electron acceptors resulted in a slight additional increase of the naphthoquinone content. A strain defective in the fnr gene, which encodes the transcriptional activator of anaerobic respiration, showed the same response. With fumarate or dimethyl sulfoxide present, 94% of the naphthoquinones consisted of menaquinone, while with nitrate up to 78% was demethylmenaquinone. With trimethylamine N-oxid as the acceptor the proportion was intermediate. From the donor substrates of anaerobic respiration only glycerol had a significant influence on the ratio of the contents of the 2 quinones. It is concluded that FNR, the gene product of the fnr gene, is not required for anaerobic derepression of naphthoquinone viosynthesis. Menaquinone appears to be involved specifically in the respiration with fumarate or dimethyl sulfoxide, and demethylmenaquinone in nitrate respiration. Both naphthoquinones appear to serve in trimethylamine N-oxide respiration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 155 (1990), S. 62-67 
    ISSN: 1432-072X
    Keywords: Menaquinone ; Succinate respiration ; Electron transport ; Bacillus subtilis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The question was investigated as to whether the bacterial menaquinone (MK) is a component of the electron transport chain catalyzing succinate respiration in Bacillus subtilis. Three different methods were applied, and the following consistent results were obtained. (i) Solvent extraction of MK from the bacterial membrane caused total inhibition of the respiratory activities with succinate and NADH, while the activity of succinate dehydrogenase remained unaffected. The respiratory activities were restored onincorporation of vitamin K1 into the membrane preparation. (ii) The membrane fraction of a B. subtilis mutant containing 15% of the wild-type amount of MK, respired succinate and NADH at reduced activities. Wild-type activities were restored on fusion of the preparation to liposomes containing vitamin K1. (iii) The membrane fraction of B. subtilis catalyzed succinate oxidation by various water-soluble naphtho- or benzoquinones at specific activities exceeding to that of succinate respiration. The results suggest that MK is involved in succinate respiration, although its redox potential is unfavorable.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 277-281 
    ISSN: 1432-072X
    Keywords: DMSO respiration ; DMS production ; Anaerobic respiration ; Anaerobic regulation ; Wolinella succinogens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The anaerobic rumen bacterium Wolinella succinogenes was able to grow by respiration with dimethylsulphoxide (DMSO) as electron acceptor and formate or H2 as electron donors. The growth yield amounted to 6.7 g and 6.4 g dry cells/mol DMSO with formate or H2 as the donors, respectively. This suggested an ATP yield of about 0.7 mol ATP/mol DMSO. Cell homogenates and the membrane fraction contained DMSO reductase activity with a high K m (43 mM) for DMSO. The electron transport from H2 to DMSO in the membranes was inhibited by 2-(heptyl)-4-hydroxyquinoline N-oxide, indicating the participation of menaquinone. Formation of DMSO reductase activity occurred only during growth on DMSO, presence of other electron acceptors (fumarate, nitrate, nitrite, N2O, and sulphur) repressed the DMSO reductase activity. DMSO can therefore be used by W. succinogenes as an acceptor for phosphorylative electron transport, but other electron acceptors are used preferentially.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...