Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: DNA ; isolation ; high-molecular-weight ; DNA damage measurement ; gel electrophoresis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Quantitation of UV-induced DNA damages in nanogram quantities of non-radiactive DNA from irradiated plants by gel electrophoresis requires a prompt, efficient, high-yield method of isolating DNA yielding high-molecular-weight, enzymatically digestible DNA. To meet these criteria we devised a high-yield method for isolating from plant tissue, DNA whose single-strand molecular length is greater than about 170 kb. Leaf tissue is embedded in agarose plugs, digested with Proteinase K in the presence of detergent, and treated with phenylmethylsulfonyl fluoride (PMSF). The agarose plugs are then soaked with buffer appropriate to the desired enzyme treatment. Evaluation of the DNA on neutral and alkaline gels indicates its high molecular length and low frequency of single-strand breaks. The DNA can be digested with damage-specific and other endonucleases. The method is especially suitable for DNA damage quantitation, as tissue processing is carried out immediately after harvesting (allowing DNA lesion measurement at precisely known times after irradiation), and many samples can be easily handled at once. It should also be useful for molecular analysis of large numbers of plant samples available only in small quantities. We here use this method to quantitate DNA damage induced by 297 and 365 nm radiation, and calculate the relative damaging effects of these wavebands in today's solar spectrum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6110
    Keywords: Leguminosae ; Mimosoideae ; Acacia ; Aculeiferum ; Monacanthea ; African acacias ; classification ; molecular markers ; RAPD ; morphology ; nodulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Morphological and RAPD markers were used to assess the relationships among nodulating and non-nodulating species of AfricanAcacia. Non-nodulating species of AfricanAcacia are only found within subg.Aculeiferum sect.Monacanthea. African species of sect.Monacanthea examined were found to form a group distinct from the other African species examined on a morphological and molecular basis. All lack the ability to nodulate, suggesting that non-nodulation may be used as a taxonomic tool. The species of sect.Aculeiferum were separated by RAPD and morphological analysis into two groups depending on whether they were armed with prickles in pairs and/or prickles in threes, or solitary. A third group of species was identified within sect.Acacia: further subdivision of this group was achieved into subsectt.Pluriseriae andUniseriae. The position ofA. albida relative to other AfricanAcacia species was found to be distinct but not totally independent of the genus. The partitioning and distribution of the genetic variability within the genus is further elucidated by the RAPD analysis of populations ofAcacia species. A population analysis ofA. polyacantha demonstrated geographical and site-specific variation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Acacia ; Kenya ; most-probable-number (MPN) ; nodulation ; rhizobia ; woody
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The rhizobial populations and nodulation status of both indigenous (mainly Acacia species) and some introduced woody legume species were assessed under glasshouse conditions in soils collected from 12 sites located in different ecological zones of Kenya. The populations among the sites, as estimated by the MPN technique, varied from 〈3.6 to〉2.3×105 cells g-1 of soil. There were some intrasite variations in population estimates depending on the trap host species, date of soil collection and the method used in sampling the soils. Nodulation in whole soil also varied across the sites with test species frequently showing higher nodulation ability in native soils. Sesbania sesban (L.) Merr. was the most prolific nodulating species while Acacia tortilis (Forsskal) Hayne was very erratic in nodulation. Nodulation of most species showed interplant and intraspecific variability within a single soil source.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...