Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Molecular and cellular biochemistry 126 (1993), S. 115-124 
    ISSN: 1573-4919
    Schlagwort(e): DNA supercoiling ; DNA topoisomerases ; [ATP]/[ADP] ratio ; aerobic anaerobic transitions ; Escherichia coli
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract This study uncovers a new mechanism of regulation of DNA supercoiling operativein vivo upon an aerobic-anaerobic transition inEscherichia coli. Exponentially growing aerobic batch cultures were subjected to a shift to anaerobic conditions. The ratio [ATP]/[ADP] remained essentially constant at 8.5 in the aerobic culture and after a transition to anaerobiosis while DNA supercoiling increased noticeably upon anaerobiosis. This result indicated that the mechanism of regulation of DNA supercoiling by the [ATP]/[ADP] ratio was not operative. The increase in DNA supercoiling was followed by a large decrease in the DNA-relaxing activity of topoisomerase I while gyrase activity remained relatively constant. This decrease in the activity of topoisomerase I is likely to be responsible for the increase in DNA supercoiling.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 193-208 
    ISSN: 0006-3592
    Schlagwort(e): yeast intermediary metabolism ; carbon and phosphorylation fluxes ; amphibolic pathways ; NADH oxidation ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: In the present work we develop a method for estimating anabolic fluxes when yeast are growing on various carbon substrates (glucose, glycerol, lactate, pyruvate, acetate, or ethanol) in minimal medium. Fluxes through the central amphibolic pathways were calculated from the product of the total required amount of a specified carbon intermediate times the growth rate. The required amount of each carbon intermediate was estimated from the experimentally determined macromolecular composition of cells grown in each carbon source and the monomer composition of macromolecules.Substrates sharing most metabolic pathways such as ethanol and acetate, despite changes in the macromolecular composition, namely carbohydrate content (34% ± 1 and 21% ± 3, respectively), did not show large variations in the overall fluxes through the main amphibolic pathways. For instance, in order to supply anabolic precursors to sustain growth rates in the range of 0.16/h to 0.205/h, similar large fluxes through Acetyl CoA synthase were required by acetate (4.2 mmol/hr g dw) or ethanol (5.2 mmol/h g dw).The Vmax activities of key enzymes of the main amphibolic pathways measured in permeabilized yeast cells allowed to confirm, qualitatively, the operation of those pathways for all substrates and were consistent on most substrates with the estimated fluxes required to sustain growth.When ATP produced from oxidation of the NADH synthesized along with the key intermediary metabolites was taken into account, higher YATPmax values (36 with respect to 24 g dw/mol ATP) were obtained for glucose. The same result was obtained for glycerol, ethanol, and acetate. A yield index (YI) was defined as the ratio of the theoretically estimated substrate flux required to sustain a given growth rate over the experimentally measured flux of substrate consumption. Comparison of Yl between growth on various carbon sources led us to conclude that ethanol (Yl = 0.84), acetate (Yl = 0.77), and lactate (Yl = 0.77) displayed the most efficient use of substrate for biomass production. For the other substrates, the Yl decayed in the following order: pyruvate 〉 glycerol 〉 glucose.An improvement of the quantitative understanding of yeast metabolism, energetics, and physiology is provided by the present analysis. The methodology proposed can be applied to other eukaryotic organisms of known chemical composition. © 1995 John Wiley & Sons, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...