Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: In tropical cropping systems with few external inputs, efficient management of mineral N derived from added organic residues is essential for the proper functioning of the system. We studied the dynamics of mineral nitrogen (N) in the top 100 cm of soil with a system of tensiometers and suction cups after applying 15N-labelled Leucaena leucocephala and Dactyladenia barteri residues to bare and cropped microplots installed in the respective alley cropping systems, and followed the fate of the N for two maize-cowpea rotations (1992 and 1993).Fifty days after applying the residues (DDA), 20% of the added residue N was found in the soil profile of the bare Leucaena treatment, and 5% under Dactyladenia, compared with 5% and 1%, respectively, where cropped. All values decreased to about 1% after 505 days. In the cropped soil, no mineral N derived from the residues was lost by leaching during the first 6 weeks.As the maize grew, the soil profile was gradually depleted of nitrate to near Zero in the Dactyladenia treatment, whereas during the cowpea season the amount of nitrate N increased to 36 kg N ha−1 for the Leucaena treatment, and 26 kg N ha−1 for the Dactyladenia treatment. The soil of the bare microplots contained substantially more nitrate N (98 and 47 kg N ha-1 during the first year on average, under Leucaena and Dactyladenia, respetively) than that of the cropped microplots, except during the 1993 cowpea season. Nitrate residing in the subsoil (80–100 cm) in the bare treatments was not readily leached to deeper soil. The risk of losses of native mineral N was greatest during the first 50 DAA and to a lesser extent during the cowpea seasons. Improved management of the hedgerows could increase the potential of the hedgerow trees to recycle mineral N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 56 (2005), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The use of ultrasonic energy for the dispersion of aggregates in studies of soil organic matter (SOM) fractionation entails a risk of redistribution of particulate organic matter (POM) to smaller particle-size fractions. As the mechanical strength of straw also decreases with increasing state of decomposition, it can be expected that not all POM will be redistributed to the same extent during such dispersion. Therefore, we studied the redistribution of POM during ultrasonic dispersion and fractionation as a function of (i) dispersion energy applied and (ii) its state of decomposition. Three soils were dispersed at different ultrasonic energies (750, 1500 and 2250 J g−1 soil) or with sodium carbonate and were fractionated by particle size. Fraction yields were compared with those obtained with a standard particle-size analysis. Undecomposed or incubated (for 2, 4 or 6 months) 13C-enriched wheat straw was added to the POM fraction (0.25–2 mm) of one of the soils before dispersion and fractionation. Dispersion with sodium carbonate resulted in the weakest dispersion and affected the chemical properties of the fractions obtained through its high pH and the introduction of carbonate. The mildest ultrasonic dispersion treatment (750 J g−1) did not result in adequate soil dispersion as too much clay was still recovered in the larger fractions. Ultrasonic dispersion at 1500 J g−1 soil obtained a nearly complete dispersion down to the clay level (0.002 mm), and it did not have a significant effect on the total amount of carbon and nitrogen in the POM fractions. The 2250 J g−1 treatment was too destructive for the POM fractions since it redistributed up to 31 and 37%, respectively, of the total amount of carbon and nitrogen in these POM fractions to smaller particle-size fractions. The amount of 13C-enriched wheat straw that was redistributed to smaller particle-size fractions during ultrasonic dispersion at 1500 J g−1 increased with increasing incubation time of this straw. Straw particles incubated for 6 months were completely transferred to smaller particle-size fractions. Therefore, ultrasonic dispersion resulted in fractionation of POM, leaving only the less decomposed particles in this fraction. The amounts of carbon and nitrogen transferred to the silt and clay fractions were, however, negligible compared with the total amounts of carbon and nitrogen in these fractions. It is concluded that ultrasonic dispersion seriously affects the amount and properties of POM fractions. However, it is still considered as an acceptable and appropriate method for the isolation and study of SOM associated with silt and clay fractions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 31 (2000), S. 254-260 
    ISSN: 1432-0789
    Keywords: Key words Imperata ; Lablab ; Maize ; Soil fumigation ; Nematodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Populations of plant parasitic nematodes and their effects on symbiotic nitrogen (N) fixation in herbaceous legumes and on some selected characteristics of other plant species associated with such cover crops were studied. Two legume species [mucuna, Mucuna pruriens (L) DC. var. utilis (Wright) Bruck and lablab, Lablab purpureus L. Sweet], one grass/weed species [imperata, Imperata cylindrica (L.) Rauschel] and a cereal (maize, Zea mays L.) were used. There were three soil treatments (fumigation, fumigation plus inoculation with Meloidogyne species, and an untreated control). Plant parasitic nematode populations in soil, roots and nodules were determined at 4, 8 and 12 weeks after planting. The response of the phytoparasitic nematodes to soil treatments varied according to the plant species present. The predominant nematodes in soils, roots and nodules of legumes were of the genus Meloidogyne, whereas other genera of parasitic nematodes dominated the fauna in soils and roots of maize and imperata. Biomass yield of mucuna was not significantly affected by either Meloidogyne spp. or the other genera of phytoparasitic nematodes. In contrast, the dry matter yield of lablab measured at 12 weeks was reduced by 16% in inoculated compared with fumigated soils. Similarly, the biomass yields of maize and imperata were reduced by 10% and 29%, respectively, in unfumigated rather than fumigated soils. The amounts of N accumulated in mucuna, maize and imperata were not significantly affected by the two groups of plant parasitic nematodes. However, at 12 weeks, lablab grown on inoculated soils accumulated only 69% of the N found in plants grown on fumigated soils. Inoculation of soil with Meloidogyne spp. significantly increased the number of nodules on lablab roots compared with the non-inoculated treatments, whereas nodulation in mucuna was not affected by soil treatment. After 12 weeks, the quantity of N2 derived from symbiotic fixation in mucuna was not significantly affected by soil treatments whereas the amount of fixed N in lablab was 32% lower in inoculated than in fumigated soils. Possible mechanisms for the non-suppressive effect of plant parasitic nematodes on mucuna are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 31 (2000), S. 261-269 
    ISSN: 1432-0789
    Keywords: Key words Cover crops ; Mixed residues ; Microbial biomass ; N-mineralization ; Soil organic matter fractions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The fate of 15N-labeled plant residues from different cover-cropping systems and labeled inorganic N fertilizer in the organic, soil mineral, microbial biomass and soil organic matter (SOM) particle-size fractions was investigated in a sandy Lixisol. Plant residues were from mucuna (legume), lablab (legume), imperata (grass), maize (cereal) and mixtures of mucuna or lablab with imperata or maize, applied as a surface mulch. Inorganic N fertilizer was applied as 15N-(NH4)2SO4 at two rates (21 and 42 mg N kg–1 soil). Total N release from mucuna or lablab residues was 2–3 times higher than from the other residues, whereas imperata immobilized N throughout the study period. In contrast, 15N was mineralized from all the plant residues irrespective of the mineralization–immobilization pattern observed for total N. After 168 days, 69% of soil mineral N in mucuna- or lablab-mulched soils was derived from the added residues, representing 4–8% of residue N, whereas 9–30% of inorganic N was derived from imperata, maize and the mixed residues. At the end of the study, 4–19% of microbial biomass N was derived from the added residue/fertilizer-N, accounting for 1–3% of added residue-N. Averaged across treatments, particulate SOM fractions accounted for less than 1% of the total soil by weight but contained 20% of total soil C and 8% of soil N. Soils amended with mucuna or lablab incorporated more N in the 250–2000 μm SOM pool, whereas soil amended with imperata or the mixed residues incorporated similar proportions of labeled N in the 250–2000 μm and 53–250 μm fractions. In contrast, in soils receiving the maize or inorganic fertilizer-N treatments, higher proportions of labeled N were incorporated into the 53–250 μm than the 250–2000 μm fractions. The relationship between these differences in residue/fertilizer-N partitioning into different SOM particle-size fractions and soil productivity is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0789
    Keywords: Key words Arbuscular mycorrhizal fungi ; Mucuna pruriens ; Nitrogen balance ; Relay cropping ; Indigenous rhizobial populations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Leguminous cover crops such as Mucuna pruriens (mucuna) have the potential to contribute to soil N and increase the yields of subsequent or associated cereal crops through symbiotic N fixation. It has often been assumed that mucuna will freely nodulate, fix N2 and therefore contribute to soil N. However, results of recent work have indicated mucuna's failure to nodulate in some farmers' fields in the derived savanna in Benin. One of the management practices that can help to improve mucuna establishment and growth is the use of rhizobial inocula to ensure compatibility between the symbiotic partners. Experiments were conducted in 1995 and 1996 on 15 farmers' fields located in three different villages (Eglimé, Zouzouvou and Tchi) in the derived savanna in Benin. The aim was to determine the response of mucuna to inoculation and examine the factors affecting it when grown in relay cropping with maize. The actual amount of N2 fixed by mucuna in the farmers' fields at 20 weeks after planting (WAP) averaged 60 kg N ha–1 (range: 41–76 kg N ha–1) representing 55% (range: 49–58%) of the plant total N. The result suggested that mucuna in these farmers' fields could not meet its total N demand for growth and seed production only by N2 fixation. It was estimated that after grain removal mucuna led to a net N contribution ranging from –37 to 30 kg N ha–1. Shoot dry weight at 20 WAP varied between 1.5 and 8.7 t ha–1 and N accumulation ranged from 22 to 193 kg N ha–1. Inoculation increased shoot dry matter by an average of 28% above the uninoculated treatments, but the increase depended on the field, location and year. For the combinations of inoculated treatments and farmers' fields, the response frequency was higher in Eglimé and Tchi than in Zouzouvou. The response to inoculated treatments was dependent on the field and inversely related to the numbers of rhizobia in the soil. Soil rhizobial populations ranged from 0 to 〉188 cells g–1 soil, and response to inoculation often occurred when numbers of indigenous rhizobia were 〈5 cells g–1 soil. In two farmers' fields at Zouzouvou where extractable P was below 10 μg g–1 soil, mucuna did not respond to rhizobial inoculation despite a higher population of rhizobia. Significant relationships between mycorrhizal colonization, growth and nodulation of mucuna were observed, and inoculated plants with rhizobia had a higher rate of colonization by arbuscular mycorrhizal fungi (%AMF) than uninoculated ones. Therefore, it was shown that mucuna will establish and fix N2 effectively in those fields where farmer's management practices such as good crop rotation and rhizobial inoculation allow a build up of AMF spores that might lead to a high degree of AMF infection and alleviate P deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Key words Alley cropping ; Nitrogen availability ; Olsen phosphorus ; Particulate organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The impact of land use (unfertilized continuous maize cropping, unfertilized and fertilized alley cropping with maize, Gliricidia sepium tree fallow, natural fallow) on the soil organic matter (SOM) status and general soil fertility characteristics were investigated for a series of soils representative for the West African moist savanna zone. Three soils from the humid forest zone were also included. In an associated pot experiment, relationships between maize N and P uptake and SOM and general soil characteristics were developed. Soils under natural fallow contained the highest amount of organic C (1.72%), total N (0.158%), and had the highest effective cation exchange capacity (ECEC) [8.9 mEq 100 g–1 dry soil], while the Olsen P content was highest in the fertilized alley cropping plots (13.7 mg kg–1) and lowest under natural fallow (6.3 mg kg–1). The N concentration of the particulate organic matter (POM) was highest in the unfertilized alley cropping plots (2.4%), while the total POM N content was highest under natural fallow (370 mg N kg–1) and lowest in continuously cropped plots (107 mg N kg–1). After addition of all nutrients except N, a highly significant linear relationship (R 2=0.91) was observed between the total N uptake in the shoots and roots of 7-week-old maize and the POM N content for the savanna soils. POM in the humid forest soils was presumably protected from decomposition due to its higher silt and clay content. After addition of all nutrients except P, the total maize P uptake was linearly related to the Olsen P content. R 2 increased from 0.56 to 0.67 in a multiple linear regression analysis including the Olsen P content and clay content (which explained 11% of the variation in P uptake). Both the SOM status and N availability were shown to be improved in land-use systems with organic matter additions, while only the addition of P fertilizer could improve P availability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0789
    Keywords: Decomposition ; N release ; Rainfall pattern ; Residue quality ; Hedgerow species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In alley-cropping systems, hedgerow trees are regularly cut back. Losses of N released from the decomposing prunings are minimized when N release is synchronized with crop N demand. In this study, the sensitivity of the decomposition of Leucaena leucocephala, Senna siamea, and Dactyladenia barteri leaf litter to the nature of the rainfall regime is correlated with the residue quality. The litterbag technique was used to measure decomposition. Four periods of 115 days, each starting at a time when hedgerow trees are normally pruned, were selected and the rain that fell during each of these periods in 1986 was simulated on a day-to-day basis by applying irrigation water on the litterbags. The number of rainfall events was better correlated with the percentage dry matter loss than with the total amount of precipitation. The relationship consisted of two lines. The slope of the first line, indicative of the sensitivity of the decomposition to varying numbers of rainfall events, correlated well with the watersoluble fraction (P〈0.05), the C:N ratio (P〈0.05), and the polyphenol: N ratio (P〈0.01) of the residues. The decomposition process was shown to be dominated by microbial catabolism, rather than leaching. Because the decomposition of the higher quality residues is affected by varying rainfall patterns and because rainfall may often be unpredictable in frequency and intensity, synchronization of N released from a significant part of the decomposing residue with crop N demand may require additional management practices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 32 (2000), S. 234-242 
    ISSN: 1432-0789
    Keywords: Key words Imperata ; Mulch ; Lablab ; Maize ; Mucuna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Reliable estimates of symbiotically fixed N2 in herbaceous legumes are important in order to determine their role in maintaining or improving N levels in tropical low-external-input farming systems. We have studied the effects of different management systems on the suitability of two non-N2-fixing reference crops, imperata [Imperata cylindrica (L.) Rauescel] and maize (Zea mays L.), for estimating N2 fixation in mucuna [Mucuna pruriens (L.) DC var. utilis (Wright) Bruck] and lablab [Lablab purpureus (L.) Sweet] in the field. The total-N-difference (TND) method of estimating N2 fixation was compared to the 15N-isotope-dilution (ID) technique. The two methods did not differ with respect to estimates of N2 fixation under in situ mulch (IM) systems. In contrast, under live-mulch (LM) systems the TND method underestimated N2 fixed in mucuna by 29% and in lablab by 40% compared to estimates made with the ID method. Irrespective of the treatment, estimates of N derived from fixation in both herbaceous legumes were not influenced by either of the reference plants. Using the ID technique, the proportion of N2 derived from fixation in mucuna and lablab at 12 weeks varied from 52% to 90% depending on whether the treatments were N fertilized, inoculated or uninoculated, cover-crop systems. In view of the nature of cover-crop systems in the derived savanna of West and Central Africa, where imperata is usually present as a weed or maize is grown in IM or LM systems, imperata or maize could be used to estimate N2 fixation and N contributions of the legumes to soil fertility and subsequent crop improvements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9680
    Keywords: Gliricidia sepium ; Leucaena leucocephala ; maize grain yield ; N accumulation ; Senna siamea ; wood biomass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The potential of alley cropping systems supplied with a limited amount of fertilizer to restore crop productivity on a degraded site and to maintain crop productivity on a recently cleared, non-degraded site on ‘terre de barre‘ soils in Southern Bénin was investigated from 1994 to 1996. Leucaena leucocephala, Senna siamea and Gliricidia sepium were used as hedgerow species. Maize yields of the no-tree control plots dropped from the initial (1990) 401 kg ha−1 and 2181 kg ha−1 on the degraded and non-degraded sites, respectively, to 109 kg ha−1 and 1346 kg ha−1 in 1996, even with application of a minimal amount of mineral fertilizer. The alley cropping systems produced on average (mean of three treatments and three years) 107% more grain than the initial 1990 values on the degraded site and 11% less grain than the initial 1990 values on the non-degraded site. Especially the Senna and to a lesser degree the Leucaena treatment yielded consistently more grain than the control. The Senna trees contained a larger amount of N and produced more wood during the first pruning on the degraded site (155 kg N ha−1 and 14.0 ton fresh wood ha−1) than on the non-degraded site (49 kg N ha−1 and 6.6 ton fresh wood ha−1) most likely because of differences in subsoil fertility, as indicated by the higher clay, exchangeable bases, and N content between 60 and 125 cm cm. N accumulation and wood production by the Leucaena and Gliricidia trees was similar in both sites (82 and 36 kg N ha−1 and 4.6 and 9.3 ton fresh wood ha−1, respectively). When a limited amount of fertilizer is available, Senna appears to be the best choice as hedgerow species on sites with a relatively fertile subsoil. For other soils, a N2-fixing species may be a better choice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9680
    Keywords: Albizia lebbeck ; Gliricidia sepium ; Leucaena leucocephala ; particle size classes ; particulate organic matter ; Senna siamea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In cropping systems with limited amounts of external inputs, the soil organic matter pool (SOM) may contribute significantly to plant nutrition. The impact of organic inputs on total SOM and particulate organic matter (POM) N contents as affected by soil type and the relationships between sources of N and maize N uptake were assessed for a set of alley cropping trials in the West- African moist savanna. The trials were established in Niaouli (Bénin Republic), in Glidji, Amoutchou, and Sarakawa (Togo), and in Bouaké and Ferkessédougou (Côte d‘ Ivoire). The total soil N content, averaged over all treatments and years, varied between 324 and 1140 mg N kg−1 soil. The POM-N content varied between 50 and 160 mg N kg−1 soil. The average proportion of soil N belonging to the POM pool ranged between 9% and 29%. This was significantly related to the annual N inputs from maize stover and prunings, when averaged over the different alley cropping treatments. The trial ‘age‘ also appeared to be related to the impact of the different treatments on the POM-N content. The Ferkessédougou soil contained a relatively higher proportion of total soil N in the POM pool because of its relatively high silt and clay content, compared to the other sites. The relative change in POM-N content between 1996 and the initial sampling was about twice the relative change in total soil N content. This suggests that N incorporated in the POM is relatively labile, compared to N incorporated in the other SOM fractions. Maize N uptake was related to the amount of add pruning-N (partial r2 of 27%), the rainfall during the growing season (partial r2 of 17%), the POM-N content (partial r2 of 14%), and to a lesser degree to the POM N concentration (partial r2 of 5%), the fertilizer N addition rate (partial r2 of 3%), and the silt and clay content of the soil (partial r2 of 3%). The POM-N content was shown to be influenced by organic matter additions and soil characteristics and to contribute significantly to maize N supply. This pool may be an important indicator for the soil fertility status of savanna soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...