Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Acyanic mutants ; Anthocyanin biosynthesis ; Dahlia ; Flavanone 3-hydroxylase ; Mutant (white-flowering) ; Streptocarpus ; Verbena ; Zinnia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Precursor experiments and chromatographic studies indicate that the hydroxylation of flavanones in the 3-position to dihydroflavonols is blocked in special white-flowering mutants ofDahlia, Streptocarpus, Verbena andZinnia. The result of our investigations was confirmed in as much as the activity of the enzyme flavanone 3-hydroxylase, which catalyses the conversion of flavanones to dihydroflavonols, could readily be detected in flower extracts of cyanic strains of the four plant species. It was found to be, however, completely absent in flower extracts of the corresponding acyanic mutants. Thus, the interruption of the anthocyanin pathway in these mutants is clearly caused by a lack of this enzyme activity. Similar to the enzymes from other sources, the 3-hydroxylases ofDahlia, Streptocarpus, Verbena andZinnia are soluble enzymes; they belong to the 2-oxoglutarate-dependent dioxygenases and the reaction is inhibited by ethylenediaminetetraacetic acid, KCN and diethyldithiocarbamate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 70 (1985), S. 300-305 
    ISSN: 1432-2242
    Keywords: Anthocyanin biosynthesis ; Flavonoid 3′-hydroxylase ; Genetic control ; Petunia hybrida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In flower extracts of defined genotypes of Petunia hybrida, an enzyme activity was demonstrated which catalyses the hydroxylation of naringenin and dihydrokaempferol in the 3′-position. Similar to the flavonoid 3′-hydroxylases of other plants, the enzyme activity was found to be localized in the microsomal fraction and the reaction required NADPH as cofactor. A strict correlation was found between 3′-hydroxylase activity and the gene Ht1, which is known to be involved in the hydroxylation of flavonoids in the 3′-position in Petunia. Thus, the introduction of the 3′-hydroxyl group is clearly achieved by hydroxylation of C15-intermediates, and the concomitant occurrence of the 3′,4′-hydroxylated flavonoids quercetin and cyanidin (paeonidin) in the presence of the functional allele Ht1 is due to the action of one specific hydroxylase catalysing the hydroxylation of common precursors for both flavonols and anthocyanins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...