Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Iron ; Uranium ; Manganese ; Nitrate ; Anaerobic sediments ; Delta proteobacteria ; Aromatics ; Heavy metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn (IV), U (VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: biomass ; FAME ; fatty acid methyl esters ; microbial community structure ; microbial ecology ; organic and conventional management ; phospholipid fatty acids ; PLFA ; soil processes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In order to achieve sustainability in managed ecosystems we must understand management impacts on soil processes and clarify the regulatory role of the microbial community on these processes. Crop rotation and organic management practices are thought to have positive impacts on the microbial biomass; however, the specific impacts of crop rotation organic management on soil microbial ecology are largely unknown. The effect of organic management on soil microbial ecology was investigated using soils collected from the Rodale Institute Research Center's long-term Farming Systems Trial (FST) experiment. The FST, begun in 1981, included a manured and a cover cropped organic rotation and a conventionally managed grain based rotation. Soil respiration rates and13C-isotope fate in a companion study suggest that the biomass characteristics of the FST treatment soils were different in November 1991. However, direct measurement of the microbial community at this time using Phospholipid Fatty Acid Analysis (PLFA) did not identify statistically significant treatment based differences in soil biomass characteristics. Variability among the PLFA profiles of treatment replicates was as great as variability between farming systems. Treatment based trends were observed among selected PLFAs, particularly those present in large amounts, that were consistent with indirect biomass and biomass-dependent measures. Overall, PLFA profiles, soil respiration rates and13C-cycling suggested that the organic cover cropped soil had the Largest and most heterogeneous microbial population while the biomass of the organic-manure amended soil was the least heterogeneous, and the most metabolically active.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...