Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 326-330 
    ISSN: 1432-0789
    Keywords: Acetate ; Acetylene ; Denitrification ; Ethanoate ; 15N/14N ; Natural abundance ; Nitrification ; Nitrosolobus multiformis ; Nitrosomonas europaea ; 18O/16O ; Oxygen ; Pseudomonas putida ; Succinate ; Waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The isotopic composition at natural abundance levels of nitrous oxide emitted from a sandy loam, neutral pH soil under a range of soil water contents (matric potentials of-0.1,-1.0 and-5.0 kPa), from soil amended with sodium succinate and sodium ethanoate, and produced by pure cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosolobus multiformis, and by the denitrifying bacterium Pseudomonas putida, has been determined in laboratory experiments. N2O from all sources was depleted in the 15N and 18O isotopes relative to the conventional references [atmospheric N2 and standard mean ocean water (SMOW), respectively]. N2O from soil was depleted in 15N and 18O to increasing extents with increasing soil water content. The isotopic composition of N2O produced by N. europaea and N. multiformis was similar to that emitted from drier soil (matric potential of-1.0 kPa) and the N2O produced by P. putida was similar to that emitted from wetter soil (matric potential of-0.1 kPa). N2O emitted from the wetter soil was enriched in 15N and 18O compared with that emitted from the drier soil. The differences in isotopic composition between N2O from the wetter and drier soil were attributed principally to isotopic fractionation during N2O reduction to N2 in the terminal step of denitrification. The effect of both sodium succinate and sodium ethanoate amendment was to increase the overall rate of N2O emission, much of which arose from denitrification, as revealed by incubation in 100 kPa O2. In addition, in the sodium ethanoate amended soil N2O reduction to N2 did not occur, as revealed by incubation in 10 kPa C2H2. The N2O from the sodium ethanoate amended soil was depleted in 15N to a greater extent than the sodium succinate amended soil, which is consistent with the observation that N2O reduction to N2 leaves residual N2O relatively enriched in 15N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 331-335 
    ISSN: 1432-0789
    Keywords: Acetylene ; Denitrification ; Inhibitors ; Nitrification ; Oxygen ; Waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrous oxide emissions from a sandy-loam textured soil wetted to matric potentials of either-1.0 or-0.1 kPa were determined in laboratory experiments in which the soil was incubated in air (control), air plus 10 Pa C2H2 (to inhibit nitrification), 100 kPa O2 (to suppress denitrification), 10 kPa C2H2 (to inhibit N2O reduction to N2 in denitrification) or following autoclaving. The total N2O production, consumption and net N2O emission from the soils together with the contributions to N2O emission from different processes of N2O production were estimated. The rate of N2O production was significantly greater in the wetter soil (282 pmol N2O g-1 soil h-1) than in the drier soil (192 pmol N2O g-1 soil h-1), but because N2O consumption by denitrifiers was also greater in the wetter soil, the net N2O emissions from the wetter and the drier soils did not differ significantly. Non-biological sources made no significant contribution to N2O emission under either moisture regime and biological processes other than denitrification and nitrification made only a small contribution (1% of the total N2O production) in the wetter soil. Denitrifying nitrifiers were the predominant source of N2O emitted from the drier soil and other (non-nitrifying) denitrifiers were the predominant source of N2O emitted from the wetter soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1988), S. 344-349 
    ISSN: 1432-0789
    Keywords: Nitrification ; Deamination ; Grassland ; N fertilisers ; pH ; Denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Soil nitrification was compared in soils from 89-year-old grassland experimental plots with diverse chemical characteristics. Measurements of NaClO3-inhibited short-term nitrifier activity (SNA) and deamination of 1,2-diamino-4-nitrobenzene were used to study nitrification and deamination activities, respectively, in soil from each of 12 plots. Using multiple regression analysis, an expression for the relationship between SNA, soil pH and fertiliser N additions was derived which indicated that both the frequency and the quantity of farmyard manure additions were important in determining the rate of nitrification. SNA was greatest where there were large and frequent additions of farmyard manure. In soil with pH below 5.2 SNA was very low or insignificant. The effect of (NH4)2SO4 additions could not be assessed because they acidified the soil. We suggest that additions of farmyard manure increase the potential for NO3 − leaching or for denitrification. Deaminase assays indicated that soils with a higher pH showed greater N mineralisation than soils with a lower pH, except at the low extreme. There was no obvious relationship between SNA and deaminase activity at higher levels of pH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 326-330 
    ISSN: 1432-0789
    Keywords: Key words Acetate ; Acetylene ; Denitrification ; Ethanoate ; 15N/14N ; Natural abundance ; Nitrification ; Nitrosolobus multiformis ; Nitrosomonas europaea ; 18O/16O ; Oxygen ; Pseudomonas putida ; Succinate ; Waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The isotopic composition at natural abundance levels of nitrous oxide emitted from a sandy loam, neutral pH soil under a range of soil water contents (matric potentials of –0.1, –1.0 and –5.0 kPa), from soil amended with sodium succinate and sodium ethanoate, and produced by pure cultures of the nitrifying bacteria Nitrosomonas europaea and Nitrosolobus multiformis, and by the denitrifying bacterium Pseudomonas putida, has been determined in laboratory experiments. N2O from all sources was depleted in the 15N and 18O isotopes relative to the conventional references [atmospheric N2 and standard mean ocean water (SMOW), respectively]. N2O from soil was depleted in 15N and 18O to increasing extents with increasing soil water content. The isotopic composition of N2O produced by N. europaea and N. multiformis was similar to that emitted from drier soil (matric potential of –1.0 kPa) and the N2O produced by P. putida was similar to that emitted from wetter soil (matric potential of –0.1 kPa). N2O emitted from the wetter soil was enriched in 15N and 18O compared with that emitted from the drier soil. The differences in isotopic composition between N2O from the wetter and drier soil were attributed principally to isotopic fractionation during N2O reduction to N2 in the terminal step of denitrification. The effect of both sodium succinate and sodium ethanoate amendment was to increase the overall rate of N2O emission, much of which arose from denitrification, as revealed by incubation in 100 kPa O2. In addition, in the sodium ethanoate amended soil N2O reduction to N2 did not occur, as revealed by incubation in 10 kPa C2H2. The N2O from the sodium ethanoate amended soil was depleted in 15N to a greater extent than the sodium succinate amended soil, which is consistent with the observation that N2O reduction to N2 leaves residual N2O relatively enriched in 15N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 22 (1996), S. 331-335 
    ISSN: 1432-0789
    Keywords: Key words Acetylene ; Denitrification ; Inhibitors ; Nitrification ; Oxygen ; Waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrous oxide emissions from a sandy-loam textured soil wetted to matric potentials of either –1.0 or –0.1 kPa were determined in laboratory experiments in which the soil was incubated in air (control), air plus 10 Pa C2H2 (to inhibit nitrification), 100 kPa O2 (to suppress denitrification), 10 kPa C2H2 (to inhibit N2O reduction to N2 in denitrification) or following autoclaving. The total N2O production, consumption and net N2O emission from the soils together with the contributions to N2O emission from different processes of N2O production were estimated. The rate of N2O production was significantly greater in the wetter soil (282 pmol N2O g–1 soil h–1) than in the drier soil (192 pmol N2O g–1 soil h–1), but because N2O consumption by denitrifiers was also greater in the wetter soil, the net N2O emissions from the wetter and the drier soils did not differ significantly. Non-biological sources made no significant contribution to N2O emission under either moisture regime and biological processes other than denitrification and nitrification made only a small contribution (1% of the total N2O production) in the wetter soil. Denitrifying nitrifiers were the predominant source of N2O emitted from the drier soil and other (non-nitrifying) denitrifiers were the predominant source of N2O emitted from the wetter soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 19 (1899), S. 179-193 
    ISSN: 0863-1778
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0863-1786
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Es wird eine Methode beschrieben, welche die elektrolytische Herstellung des Lanthanamalgams erlaubt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 235 (1937), S. 62-64 
    ISSN: 0863-1786
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Die wasserfreien Jodide von Lanthan, Cer, Praseodym, Neodym, Samarium und Ytterbium sind hergestellt worden durch Erhitzen eines Überschusses von Ammoniumjodid mit den seltenen Erden in einem besonderen Gerät bei 400°. Das überschüssige Ammoniumjodid wurde durch Sublimation entfernt.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 30 (1897), S. 1860-1862 
    ISSN: 0365-9496
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 31 (1898), S. 1311-1326 
    ISSN: 0365-9496
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...