Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomedical science 3 (1996), S. 47-53 
    ISSN: 1423-0127
    Keywords: Nicotine ; 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; Mecamylamine ; Biopterin ; Dopamine ; Striatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin known to cause dopamine (DA) neuron degeneration, while the psychoactive compound nicotine is known to excite DA neurons. Tetrahydrobiopterin is the cofactor for tyrosine hydroxylase (TOH) in the regulation of DA biosynthesis. The present study investigated the interactions between nicotine and MPTP on striatal biopterin, DA and TOH activity in BALB/c mice. The results indicated that both acute and chronic nicotine administrations at various concentrations significantly increased biopterin and DA levels in the striatum, while MPTP markedly decreased these measures. Pretreatment with nicotine at a dose having no significant effect alone, partially protected against MPTP's toxicity on biopterin and DA. Increasing the dose of nicotine did not have a further protective action. The toxicity of MPTP on TOH was also prevented by nicotine. Further, the above effects of nicotine were probably mediated through the cholinergic nicotinic receptors since mecamylamine reversed the effects of nicotine. These results suggest that nicotine interacts with the dopaminergic system probably at the level of DA biosynthesis through activating TOH and its coenzyme tetrahydrobiopterin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cotyledon (developing) ; Dermal cell complex (Phaseolus) ; Dermal transfer cell complex (Vicia) ; Phaseolus ; Sugar transport ; Vicia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cellular pathway of sugar uptake in developing cotyledons of Vicia faba L. and Phaseolus vulgaris L. seed was evaluated using a physiological approach. The cotyledon interface with the seed coat is characterised by a specialised dermal cell complex. In the case of Vicia faba cotyledons, the epidermal component of the dermal cell complex is composed of transfer cells. Sucrose is the major sugar presented to the outer surface of both cotyledons and it is taken up from the apoplasm unaltered. Estimated sucrose concentrations within the apparent free space of Vicia and Phaseolus cotyledons were 105 and 113 mM respectively. Rates of in-vitro uptake of [14C]sucrose by cotyledon segments or by whole cotyledons following physical removal or porter inactivation of the outer cells demonstrated that, for both Vicia and Phaseolus cotyledons, the dermal cell complexes are the most intense sites of sucrose uptake. Accumulation of [14C]sucrose in the storage parenchyma of whole cotyledons was directly affected by experimental manipulation of uptake by the outer cell layers and plasmolytic disruption of the interconnecting plasmodesmata. These findings indicated that sucrose accumulated by the dermal cell complexes is transported symplasmically to the storage parenchyma. Overall, it is concluded that the dermal cell complexes of the developing legume embryo, irrespective of the presence or absence of wall ingrowths, are the major sites for the uptake of sucrose released from the maternal tissues to the seed apoplasm. Thereafter, the accumulated sucrose is transported radially inward through the symplast to the storage parenchyma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Cotyledon (developing) ; Dermal cell complex (Phaseolus) ; Dermal transfer cell complex (Vicia) ; Phaseolus ; Sugar transport ; Vicia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cellular pathway of sugar uptake in developing cotyledons ofVicia faba L. andPhaseolus vulgaris L. seed was evaluated using a physiological approach. The cotyledon interface with the seed coat is characterised by a specialised dermal cell complex. In the case ofVicia faba cotyledons, the epidermal component of the dermal cell complex is composed of transfer cells. Sucrose is the major sugar presented to the outer surface of both cotyledons and it is taken up from the apoplasm unaltered. Estimated sucrose concentrations within the apparent free space ofVicia andPhaseolus cotyledons were 105 and 113 mM respectively. Rates of in-vitro uptake of [14C]sucrose by cotyledon segments or by whole cotyledons following physical removal or porter inactivation of the outer cells demonstrated that, for bothVicia andPhaseolus cotyledons, the dermal cell complexes are the most intense sites of sucrose uptake. Accumulation of [14C]sucrose in the storage parenchyma of whole cotyledons was directly affected by experimental manipulation of uptake by the outer cell layers and plasmolytic disruption of the interconnecting plasmodesmata. These findings indicated that sucrose accumulated by the dermal cell complexes is transported symplasmically to the storage parenchyma. Overall, it is concluded that the dermal cell complexes of the developing legume embryo, irrespective of the presence or absence of wall ingrowths, are the major sites for the uptake of sucrose released from the maternal tissues to the seed apoplasm. Thereafter, the accumulated sucrose is transported radially inward through the symplast to the storage parenchyma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...