Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Capsaicin ; Sensory neurone ; Calcineurin ; Desensitization ; Ion channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization using electrophysiological methods in cultured dorsal root ganglion neurones from adult rats. The rate of desensitization of capsaicin-induced responses is partly dependent on the extracellular calcium concentration and is slower when extracellular calcium is reduced. Desensitization is strongly inhibited by intracellular application of the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N, N′,N′-tetraacetic acid (BAPTA). These data suggest that desensitization is due to a rapid rise in intracellular calcium levels which occurs when capsaicin-sensitive ion channels are activated. Desensitization is not reduced by the non-specific protein kinase inhibitors H7 or staurosporine or by okadaic acid, a selective inhibitor of protein phosphatases 1 and 2A. Desensitization is greatly reduced by cyclosporin A complexed to cyclophilin, which is a specific inhibitor of protein phoshatase 2B (calcineurin). A mechanism for desensitization of capsaicin responsiveness is proposed whereby the evoked rise in calcium activates calcineurin leading to dephosphorylation and desensitization of the capsaicin-sensitive ion channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words Capsaicin ; Sensory neurone ; Calcineurin ; Desensitization ; Ion channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Capsaicin activates a non-specific cation conductance in mammalian sensory neurones. If capsaicin is applied continuously or repeatedly then there is a progressive decline in responsiveness. We have studied the mechanism of this desensitization using electrophysiological methods in cultured dorsal root ganglion neurones from adult rats. The rate of desensitization of capsaicin-induced responses is partly dependent on the extracellular calcium concentration and is slower when extracellular calcium is reduced. Desensitization is strongly inhibited by intracellular application of the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N, N′,N′-tetraacetic acid (BAPTA). These data suggest that desensitization is due to a rapid rise in intracellular calcium levels which occurs when capsaicin-sensitive ion channels are activated. Desensitization is not reduced by the non-specific protein kinase inhibitors H7 or staurosporine or by okadaic acid, a selective inhibitor of protein phosphatases 1 and 2A. Desensitization is greatly reduced by cyclosporin A complexed to cyclophilin, which is a specific inhibitor of protein phoshatase 2B (calcineurin). A mechanism for desensitization of capsaicin responsiveness is proposed whereby the evoked rise in calcium activates calcineurin leading to dephosphorylation and desensitization of the capsaicin-sensitive ion channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...