Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Larrea tridentata ; Water relations ; Nitrogen fertilization ; Stomata ; Canopy transpiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Stem ; Photosynthesis ; Desert ; Plant stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Stem photosynthetic responses to environmental parameters were investigated with Psorothamnus spinosus in the Sonoran Desert of California. Light saturation of stem photosynthesis was equal to maximum midday summer irradance (1600–2000 μmol·m-2·s-1). The optimum temperature for stem photosynthesis was 39°C, and lower stem temperatures (27–35°C) caused significant decreases (up to 50%) in stem photosynthesis. Positive stem photosynthesis was maintained up to 51°C. Stem photosynthesis was relatively insensitive to increasing vpd up to 5 kPa; However, stem conductance decreased by 25% at a vpd of 5 kPa. At vpd greater than 5 kPa stem photosynthesis decreased relatively more than that of stem conductance causing a decrease in water use efficiency and an increase an intercellular carbon dioxide concentration. Maximum stem photosynthetic rates were low (6.2–10.6 μmol·m-2·s-1) on a stem surface area, but, stem photosynthetic rates of young shoots were substantially higher (19.5–33.3 μmol· m-2·s-1) on a projected area basis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...