Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Key words: Desmosomes ; Lipid ; Membrane permeability ; Oral mucosa ; Epidermis ; Palate ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Previous studies have demonstrated that the intercellular spaces of the stratum corneum contain multilamellar lipid sheets with variable ultrastructure in addition to desmosomes or desmosomal remnants. The intercellular lamellae are thought to provide a permeability barrier whereas the desmosomes are responsible for cell-cell cohesion. In this study, transmission electron microscopy of RuO4-fixed tissue was used to compare the proportions of the intercellular spaces in epidermal and palatal stratum corneum occupied by desmosomes and by different patterns of lamellae. Desmosomes are more abundant in palatal than in epidermal stratum corneum (46.9 vs 15.0% length of intercellular space). In epidermis the most frequent lamellar arrangements involve 3 (23.5%) or 6 (24.2%) lucent bands with an alternating broad-narrow-broad pattern, whereas the most frequent lamellar arrangements in palatal tissue are 2 (17.2%) or 4 (10.5%) lucent bands of uniform width. Most of the nondesmosomal portion of the intercellular space in palatal stratum corneum was dilated and had elongated lamellae at the periphery and short disorganized lamellae and amorphous electron-dense material in the interior. It is concluded that the multilamellar lipid sheets are less extensive in palatal than in epidermal stratum corneum, which could explain the greater permeability of the palate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 193 (1992), S. 152-163 
    ISSN: 0002-9106
    Keywords: Cerebral endothelium ; Development ; Immunocytochemistry ; Rat ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A constant supply of blood-borne glucose is vital to cerebral metabolism. Although transport of glucose into the nervous tissue, effectively separated from the blood by a functional barrier (the blood-brain barrier, BBB), is one of the essential properties of the cerebral endothelium, little is known about its metabolic regulation and developmental expression in the BBB. In this study we provide evidence by immunocytochemistry that the pattern of the brain endothelial glucose transporter in rat brains (BBB-GT), immunologically homologous with the human hepatoma (G2), human erythrocyte transporter (Glut 1), changes with BBB maturation. While the neuroepithelium at embryonic days 12 and 13 shows a high incidence of immuno-detectable BBB-GT, vascularisation of the cerebral anlage and subsequent development of vascular tightness, as evidenced by intravascularly applied horseradish peroxidase and fluorescinated dextrans, is accompanied by a significant reduction BBB-GT expression in neuroepithelial cells and confinement of BBB-GT expression to the cerebral endothelium. Immunoblots and Northern blots of embryonic brain homogenates corroborate this change in BBB-GT expression in the brain anlage at the time of BBB maturation. However, low molecular weight glucose transporters, presumed to be of non-endothelial origin, are less dramatically reduced. The development of BBB tightness, therefore, seems to play a pivotal role in the pattern of BBB-GT expression during brain differentiation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Desmosomes ; Lipid ; Membrane permeability ; Oral mucosa ; Epidermis ; Palate ; Pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Previous studies have demonstrated that the intercellular spaces of the stratum corneum contain multilamellar lipid sheets with variable ultrastructure in addition to desmosomes or desmosomal remnants. The intercellular lamellae are thought to provide a permeability barrier whereas the desmosomes are responsible for cell-cell cohesion. In this study, transmission electron microscopy of RuO4-fixed tissue was used to compare the proportions of the intercellular spaces in epidermal and palatal stratum corneum occupied by desmosomes and by different patterns of lamellae. Desmosomes are more abundant in palatal than in epidermal stratum corneum (46.9 vs 15.0% length of intercellular space). In epidermis the most frequent lamellar arrangements involve 3 (23.5%) or 6 (24.2%) lucent bands with an alternating broad-narrow-broad pattern, whereas the most frequent lamellar arrangements in palatal tissue are 2 (17.2%) or 4 (10.5%) lucent bands of uniform width. Most of the nondesmosomal portion of the intercellular space in palatal stratum corneum was dilated and had elongated lamellae at the periphery and short disorganized lamellae and amorphous electron-dense material in the interior. It is concluded that the multilamellar lipid sheets are less extensive in palatal than in epidermal stratum corneum, which could explain the greater permeability of the palate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...