Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Dexfenfluramine ; Dexnorfenfluramine ; Primates ; Brain uptake and distribution ; Brain indoles ; 5-HT uptake and release ; 5HT2c receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of repeated subcutaneous (s.c) injections of dexfenfluramine (d-F; 10 mg/kg, twice daily, for 4 days) on the contents of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the brain were assessed in primates (cynomolgus and rhesus monkeys) and compared with the regional brain concentrations of unchanged drug and its active metabolite, dexnorfenfluramine (d-NF). This four-day, high-dose, regimen caused a large depletion of 5-HT (more than 95%) and of 5-HIAA (80–90%) in all brain areas studied (cortex, hippocampus, putamen, caudate nucleus and hypothalamus) 2 h after the last injection of d-F. Analysis of the plasma and brain contents of d-F and d-NF confirmed that both compounds were concentrated as in other species, in regions of the primate brain. However, d-NF was concentrated to a greater extent than d-F, and there were differences between the two primate species. Unlike in the rat brain, concentrations of d-NF greatly exceeded those of d-F in the primate brain suggesting that in these primates the d-NF may play a major role in the overall neurochemical response. The effects of d-F and d-NF on different in vitro parameters of serotoninergic neuronal function did not show appreciable differences between cynomolgus or rhesus monkeys when compared to rats, the ability of the two compounds to inhibit 5-HT reuptake, to enhance its release, and to affect the binding of [3H] -d-F or of [3H] -mesulergine (a ligand for 5-HT2c receptors) being similar. Kinetic differences in the disposition of d-F appear to have more relevance than biochemical effects in providing an explanation for the more marked brain depletion induced by d-F in primates than in rodents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...