Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Tissue culture ; Aorta ; Muscle, smooth ; Dibutyryl cAMP ; Cytochalasin B ; Cytoskeleton ; Rat (Wistar-Kyoto) ; Rat SHR (spontaneously hypertensive)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The present study analyzed effects of dibutyryl cyclic AMP (DB-cAMP) and cytochalasin B (CB) on the morphology of cultured aortic smooth muscle cells (SMC) from rat using phase-contrast microscopy, scanning electron microscopy, and fluorescence staining of actin filaments by the NBD-phallacidin method. The exposure of SMC to each of these agents led to rapid, extensive, and reversible (within 1–2 h of drug withdrawal) changes in their morphology including cytoplasmic arborization (stellation). The latter was preceded by (i) marginal membrane ruffles (DBcAMP) and (ii) increased zeiotic activity (CB), which were visible within 20 min of the exposure, followed (30–90 min incubation) by a centripetal retraction of the cytoplasm and progressive development of complete or partial arborization. Further, the effects of substances interfering with the assembly-disassembly of microtubules (colchicine, taxol, lidocaine) on DB-cAMPand CB-induced arborization were studied. None of these agents antagonized CB-induced morphological changes. Colchicine, but not lumicolchicine, taxol, or lidocaine (in a short-term study) prevented DBcAMP-induced arborization. Taxol added to cell cultures for 24 h promoted DB-cAMP-induced arborization. Both DB-cAMP and CB resulted in the disintegration of actin filaments. The present data suggest that the arborization of cultured aortic SMC is a cytoskeleton-based process involving stabilization of microtubules and disintegration of actin filaments. Our study also suggests that the SMC arborization may represent an in vitro case of SMC stellation found in situ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...