Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0878
    Keywords: Acetylcholinesterase ; Calcium ionophore ; Myotubes ; Diisopropyl fluorophosphate ; Domestic fowl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Calcium (Ca2+) and calcium-transporting ionophores stimulate protein secretion in many cellular systems. We demonstrate here that increases in intracellular calcium concentration induce a time- and concentration-dependent deposition of extracellular matrix and an increase in acetylcholinesterase secretion. Scanning and transmission electron-microscopy revealed that treatment with the calcium ionophore A23187, or high extracellular Ca2+ levels (5 mM to 15 mM) produce significant deposits of extracellular matrix around the myotubes, as well as a marked increase in the acetylcholinesterase reaction-product. Blocking muscle contraction was not necessary for the induction of AChE secretory activity. Sucrose density-gradients of media conditioned by muscle cells revealed 3 separate acetylcholinesterase molecular forms. However, incubation with A23187 increased only the 4.5 S and the 7.2 S molecular forms, whereas the 12.0 S form showed no significant differences from controls. Polyacrylamide gel electrophoresis, and autoradiography using [3H]diisopropyl fluorophosphate revealed a broad band at 65000 daltons. This band was broader than for controls when medium was obtained from A23187-treated cells. Our results show that increasing intracellular Ca2+ concentration induces marked deposition of extracellular matrix and increased acetylcholinesterase secretion, with an apparent selectivity for the monomeric and dimeric acetylcholinesterase molecular forms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...