Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dioxindole  (1)
  • Indole  (1)
  • N-heterocyclic aromatic compounds  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 5 (1994), S. 121-128 
    ISSN: 1572-9729
    Keywords: N-heterocyclic aromatic compounds ; pyridines ; alkypyridines ; metabolic pathway ; mixed culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 151 (1988), S. 71-76 
    ISSN: 1432-072X
    Keywords: Indole ; Oxindole ; Isatin ; Dioxindole ; Anthranilic acid ; Denitrification ; Sewage sludge ; Metabolic pathway ; High-performance liquid chromatography ; Mass spectrometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The metabolism of indole in a mineral-salts medium inoculated with 9% anaerobically digested nitrate-reducing sewage sludge was studied. The sequential occurrence of four structurally-related compounds — oxindole, isatin, dioxindole, and anthranilic acid — was detected using high-performance liquid or thin-layer chromatography. Mass spectrometry and proton nuclear resonance were used to identify isatin and dioxindole isolated from the culture fluids. Prior exposure of the microorganisms to indole, oxindole, isatin, or anthranilic acid resulted in accelerated decomposition of these compounds in a pattern that was consistent with a proposed pathway for the metabolism of indole under denitrifying conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...