Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 130 (2000), S. 35-47 
    ISSN: 1432-1106
    Keywords: Key words Humans ; Prehension ; Monocular ; Binocular ; Limb movements ; Distance estimation ; Visual feedback ; Visuomotor behaviour
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Previous work has demonstrated that monocular vision affects the kinematics of skilled visually guided reaching movements in humans. In these experiments, prior to movement onset, subjects appeared to be underestimating the distance of objects (and as a consequence, their size) under monocular viewing relative to their reaches made under binocular control. The present series of experiments was conducted to assess whether this underestimation was a consequence of a purely visual distance underestimation under monocular viewing or whether it was due to some implicit inaccuracy in calibrating the reach by a visuomotor system normally under binocular control. In a purely perceptual task, a group of subjects made similar explicit distance estimations of the objects used in the prehension task under monocular and binocular viewing conditions, with no time constraints. A second group of subjects made these explicit distance estimations with only 500-ms views of the objects. No differences were found between monocular and binocular viewing in either of these explicit distance-estimation tasks. The limited-views subjects also performed a visually guided reaching task under monocular and binocular conditions and showed the previously demonstrated monocular underestimation (in that their monocular grasping movements showed lower peak velocities and smaller grip apertures). A distance underestimation of 4.1 cm in the monocular condition was computed by taking the y intercepts of the monocular and binocular peak velocity functions and dividing them by a common slope that minimised the sum of squares error. This distance underestimation was then used to predict the corresponding underestimation of size that should have been observed in the monocular reaches – a value closely approximating the observed value of 0.61 cm. Taken together, these results suggest that the monocular underestimation in the prehension task is not a consequence of a purely perceptual bias but rather it is visuomotor in nature – a monocular input to a system that normally calibrates motor output on the basis of binocular vision.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...