Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: Distance geometry ; Optimized filtering ; Kalman filter ; Simulated annealing ; NMR protein structures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary We have systematically examined how the quality of NMR protein structures depends on (1) the number of NOE distance constraints. (2) their assumed precision, (3) the method of structure calculation and (4) the size of the protein. The test sets of distance constraints have been derived from the crystal structures of crambin (5 kDa) and staphylococcal nuclease (17 kDa). Three methods of structure calculation have been compared: Distance Geometry (DGEOM), Restrained Molecular Dynamics (XPLOR) and the Double Iterated Kalman Filter (DIKF). All three methods can reproduce the general features of the starting structure under all conditions tested. In many instances the apparent precision of the calculated structure (as measured by the RMS dispersion from the average) is greater than its accuracy (as measured by the RMS deviation of the average structure from the starting crystal structure). The global RMS deviations from the reference structures decrease exponentially as the number of constraints is increased, and after using about 30% of all potential constraints, the crrors asymptotically approach a limiting value. Increasing the assumed precision of the constraints has the same qualitative effect as increasing the number of constraints. For comparable numbers of constraints/residue, the precision of the calculated structure is less for the larger than for the smaller protein, regardless of the method of calculation. The accuracy of the average structure calculated by Restrained Molecular Dynamics is greater than that of structures obtained by purely geometric methods (DGEOM and DIKF).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...