Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: MEG ; MRI ; Localization methods ; P100-P200 ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The purpose of this study was to compare the relative efficacy of two methods in assessing the location of the sources of the N100 and P200 components of evoked magnetic fields (EMFs) to transient tone stimuli. EMFs to left ear stimulation, containing both components, were recorded over the right hemisphere of six normal subjects. The magnetic scalp distributions calculated at several adjacent time points, covering the duration of each component's peak, were used to estimate the source parameters of each component. Good estimates of the source of both components were obtained from all magnetic field distributions. The averaged spatial parameters derived from all distributions of each component as well as the parameters derived from the distribution that gave the best source estimate for each component were projected onto magnetic resonance images of subject's head. It was found that the source of each component is located on the superior surface of the temporal lobe and that the source of the P200 component is anterior to the N100 source in all subjects using both procedures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6792
    Keywords: Auditory responses ; Magnetoencephalography ; Single current dipole ; Distributed current ; Magnetic Field Tomography (MFT)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Measurements of the magnetic field elicited by a 50 ms long auditory stimulus, from three normal subjects and one head injured subject, are used to estimate the three dimensional distribution of generators in the brain. The resulting images are compared with point source solutions obtained with the usual single current dipole fitting procedures, over a latency range which includes the extrema in the (average) measured signal. In all cases considered, 100 or so epochs time-locked to the stimulus were magnetically recorded. These were averaged, and then analyzed using two techniques; a new distributed current model known as Magnetic Field Tomography (MFT), and the standard single current dipole (SCD) model. Both methods provide estimates of the current generators in the brain. In two of the normal subjects, the MFT solutions are super-imposed onto Magnetic Resonance Images (MRI) of the relevant cortical area. The results show that when the SCD model provides a reasonable description of the data, the MFT estimate shows one dominant localized region in agreement with the current dipole position. In the MFT sequence of solutions the activity evolves smoothly; multiple areas of activity often arise as the focal activity in one region declines while focal activity in another region grows. In contrast the SCD solutions during these intermediate periods fit the data poorly, and may move erratically from one locale to another. We conclude that MFT seems to provide a reasonable description of the activity through cortical and subcortical regions. The evolution of activity, as derived from the average signal, can be traced continuously from the onset of the stimulus, not just at the peaks. This could be particularly important for clinical applications where injury or other pathology produce a response with no clear dipolar pattern.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...