Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Early hominid behavior, paleolandscape, central place, stone cache, routed  (1)
  • electroosmosis  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Human Evolution 27 (1994), S. 7-24 
    ISSN: 0047-2484
    Keywords: Early hominid behavior, paleolandscape, central place, stone cache, routed
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-904X
    Keywords: iontophoresis ; “reverse iontophoresis” ; electroosmosis ; glucose monitoring ; skin permeation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. To demonstrate that “reverse iontophoresis” can be used to noninvasively obtain information about systemic glucose levels in vivo in humans. Methods. The passage of current across the skin in vivo drives ions into the tissue, from the electrode chambers positioned on the skin surface, and simultaneously pulls ions from the body in the opposite direction. Because of the net negative charge on the skin, under normal conditions, the membrane is permselective to cations, and a potential gradient also results, therefore, in electroosmotic convection of solvent in the direction of counterion flow (i.e., from anode to cathode). Thus, it is also possible to enhance the transport of polar, yet uncharged, species using iontophoresis. In an earlier study, the in vitro extraction of glucose, by “reverse iontophoresis” was established, and extension of the approach to an in vivo model was indicated. The idea has therefore been further explored in vivo in humans. Results. Using small, simple, prototypical electrode chambers, attached to the ventral forearm surface, direct current iontophoresis at 0.25 mA/cm2 for periods of up to 1 hour, and a sensitive analytical procedure to measure the quantities of glucose extracted, it has been shown that iontophoretic sampling of glucose is feasible. However, the shorter periods (15 minutes or less) of extraction considered yield results which are “contaminated” (it is believed) by glucose that is a product of lipid metabolism within the skin. While this material is expected to complicate the initial calibration of the approach, the problem is effectively resolved within one hour, by which time the glucose arriving in the electrode chambers on the skin surface is expected to directly reflect the subcutaneous tissue concentration. Conclusions. Based upon these initial observations, further investigation can now be directed towards optimization of electroosmotic flow and sampling time, improved reproducibility and the development of a practical assay methodology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...