Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earthquake prediction  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 126 (1988), S. 319-332 
    ISSN: 1420-9136
    Keywords: Earthquake prediction ; seismicity patterns ; seismic quiescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Seventeen cases of precursory seismic quiescence to mainshocks with magnitudes fromM L=4.7 toM S=8.0 are summarized. The amount of rate decrease ranges from 45% to 90%. The significance of these changes varies between 90% and 99.99%. The assumption that the background rate is approximately constant is fulfilled in most crustal volumes studied. All quiescence anomalies seem to have abrupt beginnings, and the rate during the anomalous period is fairly constant. The duration of the precursors ranges from 15 to 75 months, and it is not clear what factors determine that time. At least three successful predictions have been based on seismic quiescence. These cases have shown that mainshocks can be predicted based on quiescence, but they have also shown that the interpretation of the data in real time is difficult and nonunique. If a false alarm is defined as a period of quiescence with a significance level larger than a precursory quiescence in the same tectonic area, then we estimate, based on searches in four areas, that the false alarm rate may be on the order of 50%. Failure to predict may be expected in perhaps 50% of mainshocks, even in carefully monitored areas. Quiescence cannot be used as a precursor in tectonic environments with low seismic activity. Most characteristics of the phenomenon are still poorly defined, but data exist which probably permit at least a doubling of the presently available data on case histories.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 126 (1988), S. 333-356 
    ISSN: 1420-9136
    Keywords: Earthquake prediction ; seismic quiescence ; San Andreas fault
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L ≥4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0. Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence. The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...