Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 202 (1993), S. 85-94 
    ISSN: 1432-041X
    Keywords: Apterous mutation ; Corpus allatum ; Juvenile hormone ; Ring gland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructure of the corpus allatum of theapterous mutantsap 4 andap 56f ofDrosophila melanogaster during larval-pupal-adult metamorphosis and adult life was correlated with the gland's ability to synthesize juvenile hormone in vitro. During the early wandering period of the third instar of both mutants, a high concentration of smooth endoplasmic reticulum, mitochondria and mitochondrion-scalariform junction complexes are typical features of an active corpus allatum cell. Juvenile hormone biosynthesis by the glands is high at that time and, in fact, only slightly lower than that of wild type glands. In contrast to the wild type gland, the cells of the pupal and pharate adult corpus allatum of both mutants contains highly electron dense mitochondria with tubular cristae but no whorls of smooth endoplasmic reticulum nor glycogen clusters. The frequency and size of the lipid droplets, putatives depots of the juvenile hormone precursors, in cells of theap 56f gland is a function of the insect's age, but both are lower than in wild type gland cells. Juvenile hormone biosynthesis by both mutant glands remains at the basal level when compared to increased synthesis by the wild type gland. The frequency and density of lipid droplets in cells of theap 4 corpus allatum are much lower than in theap 56f glands. During adult life, the ultrastructural profile of theap 56f corpus allatum is similar to that of the wild type gland although the in vitro production of juvenile hormone by the former is much lower than that of the wild type gland. The ultrastructural features of the adult corpus allatum ofap 4 homozygotes reveal precocious degeneration and support the view that this non-vitellogenic mutant is a juvenile hormone deficient mutation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Prothoracic gland ; Ecdysteroid ; Corpus allatum ; Juvenile hormone ; Drosophila melanogaster (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary In the late third larval instar of Drosophila melanogaster, the prothoracic gland, an endocrine portion of the ring gland, synthesizes ecdysteroids at an accelerated rate. The resultant ecdysteroid titer peak initiates the events associated with metamorphosis. The normal prothoracic gland displays several ultrastructural features at this developmental stage that reflect increased steroidogenic activity, including extensive infoldings of the plasma membrane (membrane invaginations) and an increase in both the concentration of smooth endoplasmic reticulum (SER) (or transitional ER) and elongated mitochondria. By contrast, the prothoracic glands of larvae homozygous for a conditional larval lethal mutation, l(3)ecd 1ts, not only fail to produce ecdysteroids at normal levels at the restrictive temperature (29° C), but also acquire abnormal morphological features that reflect the disruptive effects of the mutation. These abnormalities include an accumulation of lipid droplets presumed to contain sterol precursors of ecdysteroids, a disappearance of SER and a drastic reduction of membrane invaginations in the peripheral area of the cell. These morphological defects are observed in prothoracic glands dissected from larvae transferred from 18° C to 29° C approximately 24 h before observation and also within 4 h of an in vitro transfer to 29° C following dissection from wandering third instar larvae reared at 18° C. No ultrastructural abnormalities were noted in the corpus allatum portion of mutant ring glands. These observations further indicate the direct involvement of the ecd gene product in ecdysteroid synthesis and suggest a role for the gene in the proper transport of precursors to the site where they can be utilized in ecdysteroid biosynthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 160 (1990), S. 145-151 
    ISSN: 1432-136X
    Keywords: Drosophila ; Juvenile hormone ; Ornithine decarboxylase ; Polyamines ; Vitellogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The activity of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, becomes elevated in intact female Drosophila melanogaster shortly after adult eclosion. This activity reaches a peak at 24 h following eclosion, and then drops to lower levels by 48 h. This pattern is not observed in males, consistent with the hypothesis that polyamine synthesis is involved in ovarian maturation in Drosophila. Abdomens isolated within 2 h of adult eclosion do not display elevated ODC activity or ovarian maturation. However, a 250-ng dose of the juvenile hormone analog methoprene (ZR-515) applied in acetone to these abdomens, recovers ovarian maturation and causes a 5–10 fold increase in enzyme activity over controls treated with acetone alone. The same dose of the inactive precursor methyl farnesoate caused no such increase, whereas a 500-ng dose of the newly discovered natural Drosophila JHB3 stimulated a four-fold response. The response to methoprene was dose-dependent, showing stimulatory activity at a dose as low as 10 ng. This stimulation by JHA is rapid, occurring between 1 and 3 h following hormone treatment, reminiscent of JH induction of fat body vitellogenin synthesis in Drosophila. Elevated ODC activity appeared to be localized in the adult fat body. During embryogenesis, ODC activity remained undetectable until just prior to hatching, when a large increase was detected. We postulate that JH may, either directly or indirectly, regulate polyamine biosynthesis in vivo, and that this synthesis may be required for the production of macromolecules during Drosophila vitellogenesis or embryogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...