Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 37-50 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral damage ; Dark neurons ; Neuronal necrosis ; Caudate ; Putamen ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The caudate nucleus and putamen belong to the selectively vulnerable brain regions which incur neuronal damage in clinical and experimental settings of both hypoglycemia and ischemia. We have previously documented the density and distribution of the hypoglycemic damage in rat caudoputamen, but the evolution of the injury, i.e., the sequence of structural changes, has not been assessed. Therefore, in the present study we analyze the light and electron microscopic alterations in the caudoputamen of rats exposed to standardized, pure insults of severe hypoglycemia with isoelectric EEG for 10–60 min, or in rats which, following insults of 30 or 60 min, were allowed to recover for periods from 5 min to 6 months. The hypoglycemic insult produced severe nerve cell injury in the dorsolateral caudoputamen. Immediately after the insult abnormal light neurons with clearing of the peripheral cytoplasm were present. These cells disappeared early in the receovery period, as they do in the cerebral cortex. Dark neurons were also present, but unlike those in the cerebral cortex they did not appear until recovery was instituted. Their number increased for a couple of hours and they became acidophilic within 4–6 h. At this stage, electron microscopy revealed severe clumping of the nuclear chromatin and cytoplasm as well as incipient fragmentation of cell membranes, all these changes indicating an irreversible injury. Within 24 h flocculent densities appeared in the mitochondria and by day 2–3 of recovery the great majority of the medium-sized neurons had undergone karyorrhexis and cytorrhexis, their remnants being subsequently removed by macrophages. After some weeks only large and a few medium-sized neurons remained amidst reactive astrocytes and numerous macrophages. The delay in the appearance of dark, lethally injured medium-sized neurons until the recovery was instituted suggests an effect that does not become apparent until the substrate supply and energy production are restored. Furthermore, it pointt out again the selectivity of the hypoglycemic nerve cell injury with respect to the type (metabolic characteristics?) and topographic location of the neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 64 (1984), S. 177-191 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Cerebral damage ; Cerebrospinal fluid ; Interstitial fluid ; Neuronal necrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Rats were exposed to insulin-induced hypoglycemia resulting in periods of cerebral isoelectricity ranging from 10 to 60 min. After recovery with glucose, they were allowed to wake up and survive for 1 week. Control rats were recovered at the stage of EEG slowing. After sub-serial sectioning, the number and distribution of dying neurons was assessed in each brain region. Acid fuchsin was found to stain moribund neurons a brilliant red. Brains from control rats showed no dying neurons. From 10 to 60 min of cerebral isoelectricity, the number of dying neurons per brain correlated positively with the number of minutes of cerebral isoelectricity up to the maximum examined period of 60 min. Neuronal necrosis was found in the major brain regions vulnerable to several different insults. However, within each region the damage was not distributed as observed in ischemia. A superficial to deep gradient in the density of neuronal necrosis was seen in the cerebral cortex. More severe damage revealed a gradient in relation to the subjacent white matter as well. The caudatoputamen was involved more heavily near the white matter, and in more severely affected animals near the angle of the lateral ventricle. The hippocampus showed dense neuronal necrosis at the crest of the dentate gyrus and a gradient of increasing selective neuronal necrosis medially in CA1. The CA3 zone, while relatively resistant, showed neuronal necrosis in relation to the lateral ventricle in animals with hydrocephalus. Sharp demarcations between normal and damaged neuropil were found in the hippocampus. The periventricular amygdaloid nuclei showed damage closest to the lateral ventricles. The cerebellum was affected first near the foramina of Luschka, with damage occurring over the hemispheres in more severely affected animals. Purkinje cells were affected first, but basket cells were damaged as well. Rare necrotic neurons were seen in brain stem nuclei. The spinal cord showed necrosis of neurons in all areas of the gray matter. Infarction was not seen in this study. The possibility is discussed that a neurotoxic substance borne in the tissue fluid and cerebrospinal fluid (CSF) contributes to the pathogenesis of neuronal necrosis in hypoglycemic brain damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 75 (1987), S. 131-139 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Hyperglycemia ; Substantia nigra ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Preischemic hyperglycemia induced by feeding or glucose infusion worsens the brain damage and the clinical outcome following ischemia of a given duration and density, and characteristically causes postischemic seizure activity. Light microscopy has previously showed that, in the rat, transient hyperglycemic ischemia induced by bilateral carotid occlusion in combination with arterial hypotension causes a uni- or bilateral lesion in the pars reticulata of the substantia nigra. Since this region has a central role in preventing seizure discharges the present study was carried out to determine the ultrastructural characteristics of this lesion. In rats with 10 min of transient hyperglycemic ischemia followed by recirculation for 1 to 18 h, the pars reticulata of the substantia nigra showed signs of status spongiosus, as well as extensive nerve cell alterations. These changes were observed after all recovery periods studied. The spongiotic appearance was mainly caused by swelling of dendrites and, to a lesser degree, by astrocytic swelling. The dendrites were expanded at all recovery times but the severity increased during the later periods of recirculation. These swollen dendrites contained severely expanded mitochondrias and endoplasmic reticulum. The cytoskeletal elements showed disordered lining of microtubules. Two major types of nerve cell alterations were present: a “pale” and a “dark” variety. The pale type was the most frequent cell alteration. It occurred in all experimental groups and at all time points. Redistribution of the nuclear chromatin and of cytoplasmic organelles as well as swelling of the same type as in the dendrites were the essential changes. The dark neurons were much fewer in number and occupied a peripheral position in the pars reticulata. Astrocytic foot processes appeared to be dilated around the dark neurons. Swelling of astrocyte processes was most pronounced in the 1 h recovery animals. Both types of neurons showed severe mitochondrial alterations of the type observed in dendrites. Occasionally, mitochondrial alterations were found in astrocytic processes as well. Blood vessel alterations were lacking. Previous studies have shown that in this model of ischemia the substantia nigra has a relatively well-preserved blood perfusion. In view of this the extensive histopathological lesions are surprising. We speculate that the lesions primarily involve excitotoxic damage to dendrites, with pronounced lactic acidosis playing a contributory role in causing axonal and glial pathology as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 64 (1984), S. 319-332 
    ISSN: 1432-0533
    Keywords: Cerebral ischemia ; Selective vulnerability ; Neuronal necrosis ; Cell death ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The density and distribution of brain damage after 2–10 min of cerebral ischemia was studied in the rat. Ischemia was produced by a combination of carotid clamping and hypotension, followed by 1 week recovery. The brains were perfusion-fixed with formaldehyde, embedded in paraffin, subserially sectioned, and stained with acid fuchsin/cresyl violet. The number of necrotic neurons in the cerebral cortex, hippocampus, and caudate nucleus was assessed by direct visual counting. Somewhat unexpectedly, mild brain damage was observed in some animals already after 2 min, and more consistently after 4 min of ischemia. This damage affected CA4 and CA1 pyramids in the hippocampus, and neurons in the subiculum. Necrosis of neocortical cells began to appear after 4 min and CA3 hippocampal damage after 6 min of ischemia, while neurons in the caudoputamen were affected first after 8–10 min. Selective neuronal necrosis of the cerebral cortex worsened into infarction after higher doses of insult. Damage was worst over the superolateral convexity of the hemisphere, in the middle laminae of the cerebral cortex. The caudate nucleus showed geographically demarcated zones of selective neuronal necrosis, damage to neurons in the dorsolateral portion showing an all-or-none pattern. Other structures involved included the amygdaloid, the thalamic reticular nucleus, the septal nuclei, the pars reticularis of the substantia nigra, and the cerebellar vermis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 50 (1980), S. 43-52 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Nerve cell injury ; Electron microscopy ; Rat cerebral cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Severe hypoglycemia was induced in rats by insulin. The brain was fixed in situ by perfusion after the spontaneous EEG had disappeared for 30 or 60 min or after recovery had been induced for 30 or 180 min by glucose injection. Samples from the cerebral cortex from the area corresponding to the previous metabolic studies were processed for electron microscopy. The light-microscopic finding of two different types of nerve cell injury, reported in a preceding communication (Agardh et al. 1980), was also verified at the ultrastructural level. The type I injury was characterized by cellular shrinkage, condensation of the cell sap and nuclei, and perineuronal astrocytic swelling. No swelling of mitochondria occurred. The slightly swollen type II injured neurons showed contraction of mitochondria, disintegration of ribosomes, loss of RER, and appearance of membrane whorls, while their nuclear chromatin remained evenly distributed. No transition from one type to the other was observed. Neither type of nerve cell injury in hypoglycemia was like that commonly seen in anoxic-ischemic insults indicating a different pathogenesis in these states despite the common final pathway of energy failure. The loss of endoplasmic membranes and disintegration of ribosomes suggests that these structures might be sacrificed for energy production in the absence of normal substrates. During recovery, though, the number of type I injured neurons decreased while some of the remaining ones appeared even more severely affected, suggesting irreversible damage. Type II injured neurons were no longer seen indicating reversibility of these changes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 67 (1985), S. 25-36 
    ISSN: 1432-0533
    Keywords: Hypoglycemia ; Hippocampus ; Neuronal necrosis ; Mitochondria ; Astrocyte ; Endothelial microvilli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Part I of this paper has documented the evolution of dark neurons into acidophilic neurons in the superficial laminae as well as the reversion of dark neurons to normal neurons in the deep laminae of the cerebral cortex in hypoglycemic brain damage. The present study describes the temporal evolution of hypoglycemic brain damage in the hippocampus. The evolution of dark neurons to acidophilic neurons was confirmed in this brain region. Four additional problems were addressed: Firstly, delayed neuronal death was looked for, and was found to occur in areas of CA1 undergoing mild damage. However, it was not preceded by a morphological free interval, had ultrastructural characteristics distinct from delayed neuronal death in ischemia, and hence should be considered a distinct phenomenon. Secondly, the gradient in the density of neuronal necrosis in the rat hippocampal pyramidal cell band was exploited to test the hypothesis that a more severe insult causes a more rapid evolution of neuronal changes. This was found to be the case, with a temporal spectrum in the timing of neuronal death: Necrosis occurred already after 2 h medially in the sobiculum, and was delayed by up to several weeks laterally in CA1. Thirdly, the almost universal sparing of CA3 pyramidal neurons after 30 min hypoglycemic isoclectricity was exploited to address the question of whether reactive changes, which could with certainty be deemed reversible, occur in CA3. Mitochondrial injury was seen in these cells, and was found to be recoverable. No reactive changes of the type previously described following ischemic insults were observed. Fourthly, the astrocytic and vascular response of the tissue was studied. A sequence of astrocytic changes representing structural and probably metabolic activation of astrocytes was seen, consisting of morphological indices of increased turnover of cellular components. Capillaries demonstrated endothelial pits, vesicles, and prominent microvilli hours to days after recovery. The results demonstrate that, in the hippocampal gyrus as in other brain regions, hypoglycemic brain damage is distinct from ischemic brain damage and likely has a different pathogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...