Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electron transfer  (3)
  • Key words Cytochrome c3  (2)
  • 1
    ISSN: 1432-1327
    Keywords: Key words Cytochrome c3 ; Mutagenesis ; Redox-Bohr ; NMR ; EPR ; Cooperativity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Reduction of the haems in tetrahaem cytochromes c 3 is a cooperative process, i.e., reduction of each of the haems depends on the redox states of the other haems. Furthermore, electron transfer is coupled to proton transfer (redox-Bohr effect). Two of its haems and a strictly conserved nearby phenylalanine residue, F20, in Desulfovibrio vulgaris (Hildenborough) cytochrome c 3 form a structural motif that is present in all cytochromes c 3 and also in cytochrome c oxidase. A putative role for this phenylalanine residue in the cooperativity of haem reduction was investigated. Therefore, this phenylalanine was replaced, with genetic techniques, by isoleucine and tyrosine in D. vulgaris (Hildenborough) cytochrome c 3. Cyclic voltammetry studies revealed a small increase (30 mV) in one of the macroscopic redox potentials in the mutated cytochromes. EPR showed that the main alterations occurred in the vicinity of haem I, the haem closest to residue 20 and one of the haems responsible for positive cooperativities in electron transfer of D. vulgaris cytochrome c 3. NMR studies of F20I cytochrome c 3 demonstrated that the haem core architecture is maintained and that the more affected haem proton groups are those near the mutation site. NMR redox titrations of this mutated protein gave evidence for only small changes in the relative redox potentials of the haems. However, electron/electron and proton/electron cooperativity are maintained, indicating that this aromatic residue has no essential role in these processes. Furthermore, chemical modification of the N-terminal amino group of cytochrome c 3 backbone, which is also very close to haem I, had no effect on the network of cooperativities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Multiheme cytochrome c ; Desulfovibrio ; Membrane proteins ; Electron transfer ; EPR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The high-molecular-mass cytochromes c (Hmcs) from the sulfate-reducing bacteria Desulfovibrio gigas and Desulfovibrio vulgaris (Hildenborough) were found to be strongly bound to the cytoplasmic membrane. After detergent solubilization they were shown to be water soluble and to be similar to those previously isolated from the soluble fractions in terms of N-terminal sequence, molecular mass, UV-visible and EPR spectroscopies. In D. gigas, higher amounts of Hmc can be obtained from the membranes than from the soluble fraction. This enabled further characterization of both cytochromes. The apparent heme reduction potentials of both Hmcs, determined at pH 7.5 through visible and EPR redox titrations, span a large range of redox potentials, approximately between 0 and –280 mV, and can be roughly divided into three groups: four to five hemes have E 0s of –30 mV to –100 mV, three to four hemes have E 0s around –170 mV, and seven to eight hemes have a lower E 0 of –250 to –280 mV. Several of these redox potentials are strongly pH dependent. Mössbauer studies of oxidized and reduced D. vulgaris Hmc show that this protein contains two high-spin hemes in both oxidation states. The rate of reduction of both Hmcs with the periplasmic hydrogenases from the corresponding organisms is extremely slow.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1327
    Keywords: Key words Cytochrome c3 ; Electron transfer ; Proton transfer ; Redox-Bohr ; Energy transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  A central step in the metabolism of Desulfovibrio spp. is the oxidation of molecular hydrogen catalyzed by a periplasmic hydrogenase. However, this enzymatic activity is quite low at physiological pH. The hypothesis that, in the presence of the tetrahaem cytochrome c 3, hydrogenase can maintain full activity at physiological pH through the concerted capture of the resulting electrons and protons by the cytochrome was tested for the case of Desulfovibrio vulgaris (Hildenborough). The crucial step involves an electron-to-proton energy transduction, and is achieved through a network of cooperativities between redox and ionizable centers within the cytochrome (redox-Bohr effect). This mechanism, which requires a relocation of the proposed proton channel in the hydrogenase structure, is similar to that proposed for the transmembrane proton pumps, and is the first example which shows evidence of functional energy transduction in the absence of a membrane confinement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1327
    Keywords: Key words Desulfovibrio ; Cytochrome c ; Hydrogenase ; Electron transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...