Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 149 (1980), S. 78-90 
    ISSN: 1432-2048
    Keywords: Electron transport ; Leaf model ; Light and CO2 assimilation ; Ribulose bisphosphate carboxylase-oxygenase ; Temperature ; Photosynthesis (C3)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 153 (1981), S. 376-387 
    ISSN: 1432-2048
    Keywords: CO2 assimilation ; Electron transport ; Gas exchange ; Phaseolus ; Photosynthesis (C3) ; Ribulose bisphosphate carboxylase-oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Carbon dioxide (high partial pressure) ; Electron transport ; Gas exchange ; Phaseolus (CO2 assimilation) ; Photosynthesis at high p(CO2) ; Ribulose-1,5-bisphosphate carboxylase-oxygenase ; Defoliation ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response of CO2-assimilation rate to the intercellular partial pressure of CO2 (p(CO2)) is used to analyse the effects of various growth treatments on the photosynthetic characteristics of P. vulgaris. Partial defoliation caused an increase in CO2-assimilation rate at all intercellular p(CO2). A change in the light regime for growth from high to low light levels caused a decrease of CO2-assimilation rate at all intercellular p(CO2). Growth in a CO2-enriched atmosphere resulted in lowered assimilation assimilation rates compared with controls at comparable intercellular p(CO2). Short-term water stress initially caused only a decline in the CO2-assimilation rate at high intercellular p(CO2), but not at low intercellular p(CO2). Except under severe water stress, changes in the initial slope of the response of CO2-assimilation rate to intercellular p(CO2) were in parallel to those of the in-vitro activity of ribulose-1,5-bisphosphate (RuBP) carboxylase. From the results, we infer that partial defoliation, changes in the light regime for growth, and growth in a CO2-enriched atmosphere cause parallel changes in RuBP-carboxylase (EC 4.1.1.39) activity and the “capacity for RuBP regeneration”, whereas short-term water stress initially causes only a decline in the RuBP-regeneration capacity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...