Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1890
    Keywords: Ectomycorrhiza ; Inoculation ; Field testing ; Laccaria spp ; Thelephora terrestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Picea sitchensis and Pseudotsuga menziesii seedlings were grown in containers, inoculated with ectomycorrhizal fungi, and planted in British forestry sites. Root samples taken during the year after planting were assessed for mycorrhiza formation. Survival and shoot height were assessed at the end of each year. Observations were made each autumn on the occurrence of sporophores of ectomycorrhizal fungi. Pot experiments were used to assess the colonization potential of soils from the experimental locations. Assessment of mycorrhiza formation by the inoculant fungi both before planting and the following year showed much variation among the fungi used. Similar variation was found among field sites. Inoculation with Laccaria isolates was most successful. Height measurements are reported for the first 2 years after planting, at which time there were few significant effects on growth of Picea sitchensis or Pseudotsuga menziesii seedlings. Experimental assessment of colonization potential was of little value in this work for predicting events in the forest.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1890
    Keywords: Key words Ectomycorrhiza ; Inoculation ; Field testing ; Laccaria spp ; Thelephora terrestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Picea sitchensis and Pseudotsuga menziesii seedlings were grown in containers, inoculated with ectomycorrhizal fungi, and planted in British forestry sites. Root samples taken during the year after planting were assessed for mycorrhiza formation. Survival and shoot height were assessed at the end of each year. Observations were made each autumn on the occurrence of sporophores of ectomycorrhizal fungi. Pot experiments were used to assess the colonization potential of soils from the experimental locations. Assessment of mycorrhiza formation by the inoculant fungi both before planting and the following year showed much variation among the fungi used. Similar variation was found among field sites. Inoculation with Laccaria isolates was most successful. Height measurements are reported for the first 2 years after planting, at which time there were few significant effects on growth of Picea sitchensis or Pseudotsuga menziesii seedlings. Experimental assessment of colonization potential was of little value in this work for predicting events in the forest.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Key words Savanna ; Cerrado ; Fire ; Elevated CO2 ; Carbohydrate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The savannas (cerrado) of south-central Brazil are currently subjected to frequent anthropogenic burning, causing widespread reduction in tree density. Increasing concentrations of atmospheric CO2 could reduce the impact of such frequent burning by increasing the availability of nonstructural carbohydrate, which is necessary for resprouting. We tested the hypotheses that elevated CO2 stimulates resprouting and accelerates replenishment of carbohydrate reserves. Using a factorial experiment, seedlings of a common Brazilian savanna tree, Keilmeyera coriacea, were grown at 350 ppm and 700 ppm CO2 and at two nutrient levels. To simulate burning, the plants were either clipped at 15 weeks or were left unclipped. Among unclipped plants, CO2 and nutrients both stimulated growth, with no significant interaction between nutrient and CO2 effects. Among clipped plants, both CO2 and nutrients stimulated resprouting. However, there was a strong interaction between CO2 and nutrient effects, with CO2 having a significant effect only in the presence of high nutrient availability. Under elevated CO2, carbohydrate reserves remained at higher levels following clipping. Root total nonstructural carbohydrate remained above 36% in all treatments, so carbohydrate reserves did not limit regrowth. These results indicate that under elevated CO2 this species may be better able to endure the high frequency of anthropogenic burning in the Brazilian savannas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 105 (1996), S. 74-80 
    ISSN: 1432-1939
    Keywords: Carbon:nitrogen ratios ; Whole root-system rates of nitrogen uptake ; Elevated CO2 ; Nitrogen uptake kinetics ; Nutrient relations ; Roots ; Soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sustained increases in plant production in elevated CO2 depend on adequate belowground resources. Mechanisms for acquiring additional soil resources include increased root allocation and changes in root morphology or physiology. CO2 research to date has focused almost exclusively on changes in biomass and allocation. We examined physiological changes in nitrate and ammonium uptake in elevated CO2, hypothesizing that uptake rates would increase with the amount of available CO2. We combined our physiological estimates of nitrogen uptake with measurements of root biomass to assess whole root-system rates of nitrogen uptake. Surprisingly, physiological rates of ammonium uptake were unchanged with CO2, and rates of nitrate uptake actually decreased significantly (P〈0.005). Root boomass increased 23% in elevated CO2 (P〈0.005), but almost all of this increase came in fertilized replicates. Rates of root-system nitrogen uptake in elevated CO2 increased for ammonium in nutrient-rich soil (P〈0.05) and were unchanged for nitrate (P〉0.80). Root-system rates of nitrogen uptake were more strongly correlated with physiological uptake rates than with root biomass in unamended soil, but the reverse was true in fertilized replicates. We discuss nitrogen uptake and changes in root biomass in the context of root nutrient concentrations (which were generally unchanged with CO2) and standing pools of belowground plant nitrogen. In research to date, there appears to be a fairly general increase in root biomass with elevated CO2, and little evidence of up-regulation in root physiology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...